Journal of Digital Imaging

, Volume 21, Issue 4, pp 433–445 | Cite as

Computerized Analysis of Digital Subtraction Angiography: A Tool for Quantitative In-vivo Vascular Imaging

  • George C. Kagadis
  • Panagiota Spyridonos
  • Dimitris Karnabatidis
  • Athanassios Diamantopoulos
  • Emmanouil Athanasiadis
  • Antonis Daskalakis
  • Konstantinos Katsanos
  • Dionisios Cavouras
  • Dimitris Mihailidis
  • Dimitris Siablis
  • George C. Nikiforidis
Article

Abstract

The purpose of our study was to develop a user-independent computerized tool for the automated segmentation and quantitative assessment of in vivo-acquired digital subtraction angiography (DSA) images. Vessel enhancement was accomplished based on the concept of image structural tensor. The developed software was tested on a series of DSA images acquired from one animal and two human angiogenesis models. Its performance was evaluated against manually segmented images. A receiver’s operating characteristic curve was obtained for every image with regard to the different percentages of the image histogram. The area under the mean curve was 0.89 for the experimental angiogenesis model and 0.76 and 0.86 for the two clinical angiogenesis models. The coordinates of the operating point were 8.3% false positive rate and 92.8% true positive rate for the experimental model. Correspondingly for clinical angiogenesis models, the coordinates were 8.6% false positive rate and 89.2% true positive rate and 9.8% false positive rate and 93.8% true positive rate, respectively. A new user-friendly tool for the analysis of vascular networks in DSA images was developed that can be easily used in either experimental or clinical studies. Its main characteristics are robustness and fast and automatic execution.

Key words

DSA image processing quantification angiogenesis experimental  

Notes

Acknowledgements

Part of this work has been presented as poster presentation in the American Association of Physicists in Medicine 48th Annual Meeting in Orlando, FL.30 We thank the European Social Fund, Operational Program for Educational and Vocational Training II, and particularly the Program PYTHAGORAS II for funding the above work.

Supplementary material

10278_2007_9047_MOESM1_ESM.doc (712 kb)
ESM 1(DOC 729 KB)

References

  1. 1.
    Carmeliet P: Angiogenesis in health and disease. Nat Med 9(6):653–660, 2003PubMedCrossRefGoogle Scholar
  2. 2.
    Carmeliet P: Angiogenesis in life, disease and medicine. Nature 438(7070):932–936, 2005PubMedCrossRefGoogle Scholar
  3. 3.
    Fischer C, Schneider M, Carmeliet P: Principles and therapeutic implications of angiogenesis, vasculogenesis and arteriogenesis. Handb Exp Pharmacol 176(Pt 2):157–212, 2006PubMedCrossRefGoogle Scholar
  4. 4.
    Blatt RJ, Clark AN, Courtney J, Tully C, Tucker AL: Automated quantitative analysis of angiogenesis in the rat aorta model using Image-Pro Plus 4.1. Comput Methods Programs Biomed 75(1):75–79, 2004PubMedCrossRefGoogle Scholar
  5. 5.
    Hasan J, Shnyder SD, Bibby M, Double JA, Bicknel R, Jayson GC: Quantitative angiogenesis assays in vivo—a review. Angiogenesis 7(1):1–16, 2004PubMedCrossRefGoogle Scholar
  6. 6.
    McDonald DM, Choyke PL: Imaging of angiogenesis: from microscope to clinic. Nat Med 9(6):713–725, 2003PubMedCrossRefGoogle Scholar
  7. 7.
    Frangi AF, Niessen WJ, Vincken KL, Viergever MA: Multiscale vessel enhancement filtering. In: Wells WM III, Colchester ACF, Delp SL Eds. Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science. New York: Springer-Verlag, 1998, pp 130–137Google Scholar
  8. 8.
    Manniesing R, Viergever MA, Niessen WJ: Vessel enhancing diffusion. A scale space representation of vessel structures. Med Image Anal 10(6):815–825, 2006PubMedCrossRefGoogle Scholar
  9. 9.
    Kirbas C, Quek F: A review of vessel extraction techniques and algorithms. ACM Comput Surv 36(2):81–121, 2004CrossRefGoogle Scholar
  10. 10.
    Meijering E, Niessen W, Weickert J, Viergever M: Evaluation of diffusion techniques for improved vessel visualization and quantification in three-dimensional rotational angiography. In: Niessen WJ, Viergever MA Eds. Medical Image Computing and Computer-Assisted Intervention (MICCAI 2001); 2001. Berlin: Springer-Verlag, 2001, pp 177–185Google Scholar
  11. 11.
    Niemisto A, Dunmire V, Yli-Harja O, Zhang W, Shmulevich I: Robust quantification of in vitro angiogenesis through image analysis. IEEE Trans Med Imaging 24(4):549–553, 2005PubMedCrossRefGoogle Scholar
  12. 12.
    Quek FK, Kirbas C: Vessel extraction in medical images by wave-propagation and traceback. IEEE Trans Med Imaging 20(2):117–131, 2001PubMedCrossRefGoogle Scholar
  13. 13.
    Wink O, Niessen WJ, Viergever MA: Multiscale vessel tracking. IEEE Trans Med Imaging 23(1):130–133, 2004PubMedCrossRefGoogle Scholar
  14. 14.
    Frangi AF, Niessen WJ, Hoogeveen RM, van Walsum T, Viergever MA: Model-based quantitation of 3-D magnetic resonance angiographic images. IEEE Trans Med Imaging 18(10):946–956, 1999PubMedCrossRefGoogle Scholar
  15. 15.
    Lorenz C, Carlsen IC, Buzug TM, Fassnacht C, Weese J: A multi-scale line filter with automatic scale selection based on the Hessian matrix for medical image segmentation. In: ter Haar Romeny B, Florack L, Koenderink J, Viergever M Eds. First International Conference on Scale-Space Theory in Computer Vision; 1997. New York: Springer-Verlag, 1997, pp 152–163Google Scholar
  16. 16.
    Sato Y, Yamamoto S, Tamura S: Accurate quantification of small-diameter tubular structures in isotropic CT volume data based on multiscale line filter responses. In: Barillot C, Haynor DR, Cunha JF, Hellier P Eds. 7th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2004). Springer, Saint-Malo, France, 2004, pp 508–515Google Scholar
  17. 17.
    Florack LMJ, ter Haar Romery BM, Koenderink JJ, Viergever MA: Scale and the differential structure of images. Image Vis Comput 10(6):376–388, 1992CrossRefGoogle Scholar
  18. 18.
    Cebral JR, Hernandez M, Frangi AF: Computational analysis of blood flow dynamics in cerebral aneurysms from CTA and 3D rotational angiography image data. In: Doblare M, Cerrolaza M, Rodrigues H Eds. International Congress on Computational Bioengineering. Zaragoza, Spain, 2003Google Scholar
  19. 19.
    Condurache A-P, Aach T: Vessel segmentation in angiograms using hysteresis thresholding. In: Ninth IAPR conference on Machine Vision Applications. Tsubuka Science City, Japan, 2005, pp 269–272Google Scholar
  20. 20.
    Karnabatidis D, Katsanos K, Diamantopoulos A, Kagadis GC, Siablis D: Transauricular arterial or venous access for cardiovascular experimental protocols in animals. J Vasc Interv Radiol 17(11 Pt 1):1803–1811, 2006PubMedCrossRefGoogle Scholar
  21. 21.
    Panagopoulos AM, Dimakopoulos P, Tyllianakis M, Karnabatidis D, Siablis D, Papadopoulos AX, Lambiris E, Kraniotis P, Sakellaropoulos G: Valgus impacted proximal humeral fractures and their blood supply after transosseous suturing. Int Orthop 28(6):333–337, 2004PubMedGoogle Scholar
  22. 22.
    Ingeholm P, Pedersen L, Holck S: Quantification of microvessel density of breast carcinoma: an assessment of the inter- and intraobserver variation. Breast 8(5):251–256, 1999PubMedCrossRefGoogle Scholar
  23. 23.
    Konerding MA: Scanning electron microscopy of corrosion casting in medicine. Scanning Microsc 5(3):851–865, 1991PubMedGoogle Scholar
  24. 24.
    Obuchowski NA: Receiver operating characteristic curves and their use in radiology. Radiology 229(1):3–8, 2003PubMedCrossRefGoogle Scholar
  25. 25.
    Nikiforidis G, Papazafiropoulos D, Siablis D, Karnabatidis D, Hatjikondi O, Dimopoulos J: Quantitative assessment of angiogenesis in the chick embryo and its chorioallantoic membrane by computerised analysis of angiographic images. Eur J Radiol 29(2):168–179, 1999PubMedCrossRefGoogle Scholar
  26. 26.
    Karnabatidis D, Dimopoulos JC, Siablis D, Papazafiropoulos D, Kalogeropoulou CP, Nikiforidis G: Quantification of the ionising radiation effect over angiogenesis in the chick embryo and its chorioallantoic membrane by computerised analysis of angiographic images. Acta Radiol 42(3):333–8, 2001PubMedCrossRefGoogle Scholar
  27. 27.
    Siablis D, Karnabatidis D, Katsanos K, Kagadis GC, Kraniotis P, Diamantopoulos A, Tsolakis J: Sirolimus-eluting versus bare stents after suboptimal infrapopliteal angioplasty for critical limb ischemia: enduring 1-year angiographic and clinical benefit. J Endovasc Ther 14(2):241–250, 2007PubMedCrossRefGoogle Scholar
  28. 28.
    Baumgartner I, Thoeny HC, Kummer O, Roefke C, Skjelsvik C, Boesch C, Kreis R: Leg ischemia: assessment with MR angiography and spectroscopy. Radiology 234(3):833–841, 2005PubMedCrossRefGoogle Scholar
  29. 29.
    Kothari M, Guermazi A, White D, Suhy J, Reinhold C: Imaging in antiangiogenesis trial: a clinical trials radiology perspective. Br J Radiol 76(Spec No 1):S92–S96, 2003PubMedCrossRefGoogle Scholar
  30. 30.
    Kagadis G, Spyridonos P, Mihailidis D, Daskalakis A, Katsanos K, Diamantopoulos A, Karnabatidis D, Siablis D, Cavouras D, Nikiforidis G: A computerized automated segmentation methodology for the recognition of vessels from in vivo acquired DSA images. In: 48th Annual Meeting of the AAPM. Orlando, FL, USA, 2006, p 2018Google Scholar

Copyright information

© Society for Imaging Informatics in Medicine 2007

Authors and Affiliations

  • George C. Kagadis
    • 1
  • Panagiota Spyridonos
    • 1
  • Dimitris Karnabatidis
    • 2
  • Athanassios Diamantopoulos
    • 2
  • Emmanouil Athanasiadis
    • 1
  • Antonis Daskalakis
    • 1
  • Konstantinos Katsanos
    • 2
  • Dionisios Cavouras
    • 3
  • Dimitris Mihailidis
    • 4
  • Dimitris Siablis
    • 2
  • George C. Nikiforidis
    • 1
  1. 1.Department of Medical Physics, School of MedicineUniversity of PatrasRionGreece
  2. 2.Department of Radiology, School of MedicineUniversity of PatrasRionGreece
  3. 3.Department of Medical Instrumentation TechnologyTechnological Education Institute of AthensAthensGreece
  4. 4.Charleston Radiation Therapy ConsCharlestonUSA

Personalised recommendations