Journal of Digital Imaging

, Volume 21, Issue 2, pp 219–234 | Cite as

3D Bicipital Groove Shape Analysis and Relationship to Tendopathy

  • Aaron D. Ward
  • Ghassan Hamarneh
  • Mark E. Schweitzer
Article

Abstract

The bicipital groove of the proximal humerus is formed by the medial and lateral tuberosities and serves to retain the long biceps tendon in its proper place as the arm moves. Bicipital root and proximal tendon disorders are an important symptom generator in the shoulder. The accuracy of the diagnosis of many shoulder disorders visually without quantitative shape analysis is limited, motivating a clinical need for some ancillary method to assess the proximal biceps. In previous studies, measurements of bicipital groove shape were 2-dimensional (2D), taken from a single axial slice. Because of significant variations in groove shape from one axial slice to another in a single patient, such approaches risk overlooking shape features important to long biceps tendon pathology. In this paper, we present a study of the relationship between bicipital groove shape and long biceps tendon pathology using a novel 3-dimensional (3D) shape descriptor for the bicipital groove. In addition to providing quantitative measures of the shape of the groove and its relation to tendopathy, the new descriptor allows for intuitive, descriptive visualization of the shape of the groove.

Key words

Bicipital groove intertubercular sulcus long biceps tendon musculoskeletal disorder 3D shape analysis 

References

  1. 1.
    Bateman JE: The Shoulder and Neck. USA: W. B. Saunders Company, 1978Google Scholar
  2. 2.
    Meyer AW: Spontaneous dislocation and destruction of tendon of long head of biceps brachii. Fifty-nine instances. Arch Surg 17:493–506, 1928Google Scholar
  3. 3.
    Hitchcock HH, Bechtol CO: Painful shoulder. Observations on the role of the tendon of the biceps brachii in its causation. J Bone Jt Surg Am 30A:263–273, 1948Google Scholar
  4. 4.
    Ueberham K, Le Floch-Prigent P: Intertubercular sulcus of the humerus: biometry and morphology of 100 dry bones. Surg Radiol Anat 20(5):351–354, 1998PubMedCrossRefGoogle Scholar
  5. 5.
    Pfahler M, Brenner S, Refior H: The role of the bicipital groove in tendopathy of the long biceps tendon. J Bone Jt Surg 8(5):419–424, 1999Google Scholar
  6. 6.
    Ahovuo J: Radiographic anatomy of the intertubercular groove of the humerus. Eur J Radiol 5(2):83–86, 1985PubMedGoogle Scholar
  7. 7.
    Robertson DD, Yuan J, Bigliani LU, Flatow EL, Yamaguchi K: Three-dimensional analysis of the proximal part of the humerus: relevance to arthroplasty. J Bone Jt Surg Am 82-A(11):1594–1602, 2000Google Scholar
  8. 8.
    Itamura J, Dietrick T, Roidis N, Shean C, Chen F, Tibone J: Analysis of the bicipital groove as a landmark for humeral head replacement. J Bone Jt Surg 11(4):322–326, 2002Google Scholar
  9. 9.
    Blum H: A transformation for extracting new descriptors of shape. In: Whaten-Dunn W Ed. Models for the Perception of Speech and Visual Form. Cambridge, USA: MIT Press, 1967, pp 362–380Google Scholar
  10. 10.
    Pizer S, Fletcher PT, Joshi S, Thall A, Chen JZ, Fridman Y, Fritsch DS, Gash AG, Glotzer JM, Jiroutek MR, Lu C, Muller KE, Tractor G, Yushkevich P, Chaney EL: Deformable M-reps for 3D medical image segmentation. IJCV 55(2–3):85–106, 2003CrossRefGoogle Scholar
  11. 11.
    Heijden F, Duin RPW, Ridder D, Tax DMJ: Classification, Parameter Estimation and State Estimation: An Engineering Approach Using Matlab. USA: John Wiley and Sons, 2004CrossRefGoogle Scholar
  12. 12.
    van Leersum M, Schweitzer ME: Magnetic resonance imaging of the biceps complex. Magn Reson Imaging Clin N Am 1(1):77–86, 1993PubMedGoogle Scholar
  13. 13.
    Cervilla V, Schweitzer ME, Ho C, Motta A, Kerr R, Resnick D: Medial dislocation of the biceps brachii tendon: appearance at MR imaging. Radiology 180(2):523–526, 1991PubMedGoogle Scholar
  14. 14.
    Jain AK: Fundamentals of Digital Image Processing. USA: Prentice Hall, New Jersey, 1989Google Scholar
  15. 15.
    Duda RO, Hart PE: Use of the Hough transformation to detect lines and curves in pictures. Commun ACM 15:11–15, 1972CrossRefGoogle Scholar
  16. 16.
    Goodall C: Procrustes methods in the statistical analysis of shape. J R Stat Soc B 53(2):285–339, 1991Google Scholar
  17. 17.
    Jolliffe IT: Principal Components Analysis. New York, USA: Springer-Verlag, 1986Google Scholar
  18. 18.
    Sadjadi FA, Hall EL: Three-dimensional moment invariants. IEEE PAMI 2(2):127–136, 1980Google Scholar
  19. 19.
    Delft University of Technology: PRTools 4. http://www.prtools.org, 2005
  20. 20.
    Fukunaga K: Introduction to Statistical Pattern Recognition, 2nd edition. Boston: Academic Press, 1990Google Scholar
  21. 21.
    The MathWorks, Inc.: Matlab 7.0.4.365 R14 SP2, 1984–2005Google Scholar
  22. 22.
    Selveraj KG, Selvakuhmarb V, Indrasingh I, Chandib G: Handedness identification from intertubercular sulcus of the humerus by discriminant function analysis. Forensic Sci Int 98:101–108, 1998CrossRefGoogle Scholar

Copyright information

© Society for Imaging Informatics in Medicine 2007

Authors and Affiliations

  • Aaron D. Ward
    • 1
  • Ghassan Hamarneh
    • 1
  • Mark E. Schweitzer
    • 2
  1. 1.Medical Image Analysis LabSimon Fraser UniversityBurnabyCanada
  2. 2.Department of Radiology and Orthopedic SurgeryNYU School of Medicine, Hospital for Joint DiseasesNew YorkUSA

Personalised recommendations