Advertisement

Journal of Digital Imaging

, Volume 18, Issue 3, pp 219–226 | Cite as

Functional Cluster Analysis of CT Perfusion Maps: A New Tool for Diagnosis of Acute Stroke?

  • Christian BaumgartnerEmail author
  • Kurt Gautsch
  • Christian Böhm
  • Stephan Felber
Article

CT perfusion imaging constitutes an important contribution to the early diagnosis of acute stroke. Cerebral blood flow (CBF), cerebral blood volume (CBV) and time-to-peak (TTP) maps are used to estimate the severity of cerebral damage after acute ischemia. We introduce functional cluster analysis as a new tool to evaluate CT perfusion in order to identify normal brain, ischemic tissue and large vessels. CBF, CBV and TTP maps represent the basis for cluster analysis applying a partitioning (k-means) and density-based (density-based spatial clustering of applications with noise, DBSCAN) paradigm. In patients with transient ischemic attack and stroke, cluster analysis identified brain areas with distinct hemodynamic properties (gray and white matter) and segmented territorial ischemia. CBF, CBV and TTP values of each detected cluster were displayed. Our preliminary results indicate that functional cluster analysis of CT perfusion maps may become a helpful tool for the interpretation of perfusion maps and provide a rapid means for the segmentation of ischemic tissue.

Key words

Computed tomography perfusion imaging brain infarction cluster analysis 

Notes

Acknowledgments

We thank Mr. Mattias Bair for the software implementation. This study was supported by the Austrian Industrial Research Promotion Fund FFF (Grant no. HITT-10 UMIT).

References

  1. 1.
    Miles, KA 2003Acute cerebral stroke imaging and brain perfusion with the use of high-concentration contrast mediaEur Radiol13117120Google Scholar
  2. 2.
    Bohner, G, Forschler, A, Hamm, B, Lehmann, R, Klingebiel, R 2003Quantitative perfusion imaging by multi-slice CT in stroke patientsRofo, Fortschr Geb Rontgenstrahlen Neuen Bildgeb Verfahr175806813Google Scholar
  3. 3.
    Wintermark, M, Reichhart, M, Thiran, JP, Maeder, P, Chalaron, M, Schnyder, P, Bogousslavsky, J, Meuli, R 2002Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patientsAnn Neurol51417432CrossRefPubMedGoogle Scholar
  4. 4.
    Keith, CJ, Griffiths, M, Petersen, B, Anderson, RJ, Miles, KA 2002Computed tomography perfusion imaging in acute strokeAustralas Radiol46221230CrossRefPubMedGoogle Scholar
  5. 5.
    Wintermark, M, Maeder, P, Thiran, JP, Schnyder, P, Meuli, R 2001Quantitative assessment of regional cerebral blood flows by perfusion CT studies at low injection rates: a critical review of the underlying theoretical modelsEur Radiol1112201230CrossRefPubMedGoogle Scholar
  6. 6.
    Konig, M, Banach-Planchamp, R, Kraus, M, Klotz, E, Falk, A, Gehlen, W, Heuser, L 2000CT perfusion imaging in acute ischemic cerebral infarct: comparison of cerebral perfusion maps and conventional CT findingsRofo, Fortschr Geb Rontgenstrahlen Neuen Bildgeb Verfahr172219226Google Scholar
  7. 7.
    Kaufman, L, Rousseeuw, PJ 1990Finding Groups in Data: An Introduction to Cluster AnalysisJohn Wiley & SonsNew YorkGoogle Scholar
  8. 8.
    Everitt, BS, Landau, S, Leese, M 2001Cluster Analysis4Oxford University PressNew YorkGoogle Scholar
  9. 9.
    Konig, M, Klotz, E, Heuser, L 2000Cerebral perfusion CT: theoretical aspects, methodical implementation and clinical experience in the diagnosis of ischemic cerebral infarctionRofo, Fortschr Geb Rontgenstrahlen Neuen Bildgeb Verfahr172210218Google Scholar
  10. 10.
    Cenic, A, Nabavi, DG, Craen, RA, Gelb, AW, Lee, TY 1999Dynamic CT measurement of cerebral blood flow: a validation studyAm J Neuroradiol206373PubMedGoogle Scholar
  11. 11.
    Nabavi, DG, Cenic, A, Craen, RA, Gelb, AW, Bennett, JD, Kozak, R, Lee, TY 1999CT assessment of cerebral perfusion: experimental validation and initial clinical experienceRadiology213141149PubMedGoogle Scholar
  12. 12.
    Nabavi, DG, Cenic, A, Dool, J, Smith, RM, Espinosa, F, Craen, RA, Gelb, AW, Lee, TY 1999Quantitative assessment of cerebral hemodynamics using CT: stability, accuracy, and precision studies in dogsJ Comput Assist Tomogr23506515CrossRefPubMedGoogle Scholar
  13. 13.
    Meier, P, Zierler, KL 1954On the theory of the indicator-dilution method for measurement of blood flow and volumeJ Appl Physiol12731744Google Scholar
  14. 14.
    Zierler, KL 1965Equations for measuring blood flow by external monitoring of radioisotopesCirculation16309321Google Scholar
  15. 15.
    Theiler, J, Gisler, G 1997A contiguity-enhanced k-means clustering algorithm for unsupervised multispectral image segmentationProc SPIE3159108118CrossRefGoogle Scholar
  16. 16.
    Ester, M, Kriegel, HP, Sander, J, Xu, X 1996A density based algorithm for discovering clusters in large spatial databases with noiseProceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD’96)AAAI PressMenlo Park, CA226231Google Scholar
  17. 17.
    Wintermark, M, Thiran, JP, Maeder, P, Schnyder, P, Meuli, R 2001Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable xenon CT: a validation studyAm J Neuroradiol22905914PubMedGoogle Scholar

Copyright information

© SCAR (Society for Computer Applications in Radiology) 2005

Authors and Affiliations

  • Christian Baumgartner
    • 1
    Email author
  • Kurt Gautsch
    • 2
  • Christian Böhm
    • 3
  • Stephan Felber
    • 2
  1. 1.Research Group for Biomedical Data Mining, Institute for Information SystemsUniversity for Health Sciences, Medical Informatics and TechnologyHall in TirolAustria
  2. 2.Department for Radiology IIInnsbruck Medical UniversityInnsbruckAustria
  3. 3.Institute for Computer ScienceUniversity of MunichMunichGermany

Personalised recommendations