Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

From analytical purposes to data visualizations: a decision process guided by a conceptual framework and eye tracking

Abstract

Data visualizations are versatile tools for gaining cognitive access to large amounts of data and for making complex relationships in data understandable. This paper proposes a method for assessing data visualizations according to the purposes they fulfill in domain-specific data analysis settings. We introduce a framework that gets configured for a given analysis domain and allows to choose data visualizations in a methodically justified way, based on analysis questions that address different aspects of data to be analyzed. Based on the concepts addressed by the analysis questions, the framework provides systematic guidance for determining which data visualizations are able to serve which conceptual analysis interests. In a second step of the method, we propose to follow a data-driven approach and to experimentally compare alternative data visualizations for a particular analytical purpose. More specifically, we propose to use eye tracking to support justified decisions about which of the data visualizations selected with the help of the framework are most suitable for assessing the analysis domain in a cognitively efficient way. We demonstrate our approach of how to come from analytical purposes to data visualizations using the example domain of Process Modeling Behavior Analysis. The analyses are performed on the background of representative analysis questions from this domain.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. 1.

    Larger versions of the figures are available at https://doi.org/10.5281/zenodo.1419594.

  2. 2.

    All presented stimuli are available at https://doi.org/10.5281/zenodo.1419598.

  3. 3.

    All data about participants’ background, expected tasks’ answers, and answers accuracy are available at https://doi.org/10.5281/zenodo.1419598.

  4. 4.

    The complete source code for converting eye tracking data into event logs is available at https://github.com/DTU-SE/tsv2xes.

  5. 5.

    See http://www.fluxicon.com/disco/.

References

  1. 1.

    van der Aalst, W.M.: Process Mining, 2nd edn. Springer, Berlin (2016). https://doi.org/10.1007/978-3-662-49851-4

  2. 2.

    Basili, V.R., Selby, R.W., Hutchens, D.H.: Experimentation in software engineering. IEEE Trans. Softw. Eng. 12(7), 733–743 (1986). http://dl.acm.org/citation.cfm?id=9775.9777

  3. 3.

    Bennett, K.B., Flach, J.M.: Display and Interface Design—Subtle Science. Exact Art. CRC Press, Boca Raton (2011)

  4. 4.

    Berson, A., Smith, S.J.: Data Warehousing, Data Mining, & OLAP. McGraw-Hill, New York (2004)

  5. 5.

    Bertin, J.: Semiology of Graphics: Diagrams, Networks. Maps. University of Wisconsin Press, Madison (1983)

  6. 6.

    Borner, K., Polley, D.E.: Visual Insights: A Practical Guide to Making Sense of Data. MIT Press, Cambridge (2014)

  7. 7.

    Buckl, S., Ernst, A., Matthes, F., Schweda, C.: Enterprise architecture management patterns for enterprise architecture visioning. In: Proceedings of the 14th Annual European Conference on Pattern Languages of Programming (EuroPLoP 2009). Irsee, Germany (2009)

  8. 8.

    Burattin, A., Kaiser, M., Neurauter, M., Weber, B.: Eye tracking meets the process of process modeling: a visual analytic approach. In: TAProViz (2016)

  9. 9.

    Cairo, A.: The Functional Art. Voices that Matter. Pearson Education (2010)

  10. 10.

    Chen, C.: Information Visualization. Springer, London (2010)

  11. 11.

    Chen, C., Härdle, W.K., Unwin, A. (eds.): Handbook of Data Visualization. Springer, Berlin (2008)

  12. 12.

    Claes, J., Vanderfeesten, I., Pinggera, J., Reijers, H.A., Weber, B., Poels, G.: A visual analysis of the process of process modeling. IseB 13(1), 147–190 (2015). https://doi.org/10.1007/s10257-014-0245-4

  13. 13.

    Claes, J., Vanderfeesten, I.T.P., Gailly, F., Grefen, P., Poels, G.: The structured process modeling method (SPMM) what is the best way for me to construct a process model? Decis. Support Syst. 100, 57–76 (2017). https://doi.org/10.1016/j.dss.2017.02.004

  14. 14.

    Codd E.F., C.S.B.S.C.T.: Providing olap (on-line analytical processing) to user analysts: an it mandate (1993)

  15. 15.

    Cooper, A.: About Face: The Essentials of Interaction Design, 4th edn. Wiley, Hoboken (2014)

  16. 16.

    Few, S.: Information Dashboard Design: The Effective Visual Communication of Data. O’Reilly, Sebastopol (2006)

  17. 17.

    Frank, U., Heise, D., Kattenstroth, H.: Use of a domain specific modeling language for realizing versatile dashboards. In: J.P. Tolvanen, M. Rossi, J. Gray, J. Sprinkle (eds.) Proceedings of the 9th OOPSLA Workshop on Domain-Specific Modeling (DSM), Helsinki Business School, Helsinki, 2009 (2009)

  18. 18.

    Gärdenfors, P.: Conceptual Spaces. MIT Press, Cambridge (2000)

  19. 19.

    Goldberg, J.H., Kotval, X.P.: Computer interface evaluation using eye movements: methods and constructs. Int. J. Ind. Ergon. 24(6), 631–645 (1999). https://doi.org/10.1016/S0169-8141(98)00068-7. http://www.sciencedirect.com/science/article/pii/S0169814198000687

  20. 20.

    Gulden, J.: Visually comparing process dynamics with rhythm-eye views. In: Dumas, M., Fantinato, M. (eds.) Business Process Management Workshops: BPM 2016 International Workshops, Rio de Janeiro, Brazil, September 19, 2016. Revised Papers, Springer, Berlin (2016)

  21. 21.

    Gulden, J., van der Linden, D., Aysolmaz, B.: Requirements for research on visualizations in information systems engineering. In: ENASE Conference (2016)

  22. 22.

    Gulden, J., Reijers, H.A.: Toward advanced visualization techniques for conceptual modeling. In: CAiSE Forum. CEUR (2015)

  23. 23.

    Hichert, R., Faisst, J., et al.: International business communication standards (ibcs\(\textregistered \)) v. 1.1 (2017). http://www.ibcs-a.org/

  24. 24.

    Holmqvist, K.: Eye Tracking: A Comprehensive Guide to Methods and Measures. Oxford University Press, Oxford (2011)

  25. 25.

    IEEE Task Force on Process Mining: Process Mining Manifesto. In: F. Daniel, K. Barkaoui, S. Dustdar (eds.) Business Process Management Workshops, pp. 169–194. Springer-Verlag (2011)

  26. 26.

    Johnson, M., Lakoff, G.: Philosophy in the Flesh: The Embodied Mind and Its Challenge to Western Thought. Basic Books, New York (1999)

  27. 27.

    Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation (2001)

  28. 28.

    Khosroshahi, P.A., Hauder, M., Schneider, A.W., Matthes, P.D.F.: Enterprise architecture management pattern catalog version 2.0. Tech. rep., Technical University Munich, Munich (2015)

  29. 29.

    Kirk, A.: Data Visualization: a successful design process. Packt Publishing (2012)

  30. 30.

    Kleiner, N.: Can business process changes be cheaper implemented with workflow management systems? Innovations Through Information Technology 1 and 2, 529–532 (2004)

  31. 31.

    Kurzhals, K., Fisher, B.D., Burch, M., Weiskopf, D.: Eye tracking evaluation of visual analytics. Information Visualization 15(4), 340–358 (2016). https://doi.org/10.1177/1473871615609787

  32. 32.

    Pinggera, J.: The Process of Process Modeling. Ph.D. thesis, University of Innsbruck, Department of Computer Science (2014)

  33. 33.

    Pinggera, J., Soffer, P., Fahland, D., Weidlich, M., Zugal, S., Weber, B., Reijers, H., Mendling, J.: Styles in business process modeling: an exploration and a model. Softw. Syst. Modeling 14(3), 1055–1080 (2015). https://doi.org/10.1007/s10270-013-0349-1

  34. 34.

    Pinggera, J., Soffer, P., Fahland, D., Weidlich, M., Zugal, S., Weber, B., Reijers, H.A., Mendling, J.: Styles in business process modeling: an exploration and a model. Softw. Syst. Modeling 14(3), 1055–1080 (2015). https://doi.org/10.1007/s10270-013-0349-1

  35. 35.

    Pinggera, J., Zugal, S., Weidlich, M., Fahland, D., Weber, B., Mendling, J., Reijers, H.: Tracing the process of process modeling with modeling phase diagrams. In: Proc. ER-BPM ’11, pp. 370–382 (2012)

  36. 36.

    Poole, A., Ball, L.J.: Eye tracking in human-computer interaction and usability research: current status and future. In: Prospects”, Chapter in C. Ghaoui (Ed.): Encyclopedia of Human-Computer Interaction. Pennsylvania: Idea Group, Inc (2005)

  37. 37.

    Poole, A., Ball, L.J., Phillips, P.: In Search of Salience: A Response-time and Eye-movement Analysis of Bookmark Recognition, pp. 363–378. Springer London, London (2005). https://doi.org/10.1007/1-84628-062-1_23

  38. 38.

    Sharp, H.: Interaction Design. Wiley, Hoboken (2011)

  39. 39.

    Shmueli, G., Bruce, P., Yahav, I., Patel, N., Lichtendahl, K.: Data Mining for Business Analytics: Concepts, Techniques, and Applications in R. Wiley (2017). https://books.google.de/books?id=ETwuDwAAQBAJ

  40. 40.

    Sjoeberg, D.I.K., Hannay, J.E., Hansen, O., Kampenes, V.B., Karahasanovic, A., Liborg, N., Rekdal, A.C.: A survey of controlled experiments in software engineering. IEEE Trans. Softw. Eng. 31(9), 733–753 (2005). https://doi.org/10.1109/TSE.2005.97

  41. 41.

    Spence, R.: Information Visualization. Prentice Hall, Upper Saddle River (2007)

  42. 42.

    Surma, J.: Business Intelligence: Making Decisions Through Data Analytics. Business Expert Press, New York (2011)

  43. 43.

    Tufte, E.R.: The Visual Display of Quantitative Information. Graphics Press, Cheshire (1983)

  44. 44.

    Weber, B., Gulden, J., Burattin, A.: Designing visual decision making support with the help of eye-tracking. In: S. Nurcan, J. Gulden (eds.) BPMDS 2017 Radar Proceedings. CEUR (2017)

  45. 45.

    Zelkowitz, M.V., Wallace, D.R.: Experimental models for validating technology. Computer 31(5), 23–31 (1998). https://doi.org/10.1109/2.675630

Download references

Acknowledgements

This work is partially funded by the Austrian Science Fund Project “The Modeling Mind: Behavior Patterns in Process Modeling” (P26609).

Author information

Correspondence to Jens Gulden.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Selmin Nurcan and Rainer Schmidt.

Appendix: Detailed descriptive statistics for timing dimension

Appendix: Detailed descriptive statistics for timing dimension

See Tables 10, 11, 12, and 13.

Table 10 Descriptive statistics for event characteristics and relative timing
Table 11 Descriptive statistics for phase characteristics and relative timing
Table 12 Descriptive statistics for event characteristics and absolute timing
Table 13 Descriptive statistics for phase characteristics and absolute timing

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gulden, J., Burattin, A., Andaloussi, A.A. et al. From analytical purposes to data visualizations: a decision process guided by a conceptual framework and eye tracking. Softw Syst Model (2019). https://doi.org/10.1007/s10270-019-00742-z

Download citation

Keywords

  • Data visualization
  • Process execution data
  • Process Modeling Behavior Analysis
  • Eye tracking
  • Reading patterns
  • Process mining