Trade-off analysis for SysML models using decision points and CSPs

  • Patrick LeserfEmail author
  • Pierre de Saqui-Sannes
  • Jérôme Hugues
Regular Paper


The expected benefits of model-based systems engineering (MBSE) include assistance to the system designer in finding the set of optimal architectures and making trade-off analysis. Design objectives such as cost, performance and reliability are often conflicting. The SysML-based methods OOSEM and the ARCADIA method focus on the design and analysis of one alternative of the system. They freeze the topology and the execution platform before optimization starts. Further, their limitation quickly appears when a large number of alternatives were evaluated. The paper avoids these problems and improves trade-off analysis in a MBSE approach by combining the SysML modeling language and so-called “decision points.” An enhanced SysML model with decision points shows up alternatives for component redundancy and instance selection and allocation. The same SysML model is extended with constraints and objective functions using an optimization context and parametric diagrams. Then, a representation of a constraint satisfaction multi-criteria objective problem is generated and solved with a combination of solvers. A demonstrator implements the proposed approach into an Eclipse plug-in; it uses the Papyrus and CSP solvers, both are open-source tools. A case study illustrates the methodology: a mission controller for an Unmanned Aerial Vehicle that includes a stereoscopic camera sensor module.


MBSE Optimization SysML CSP Papyrus System engineering Optimal architecture design Decision points 



  1. 1.
    INCOSE, Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities V3.1, Cecilia Haskins, CSEP (2007)Google Scholar
  2. 2.
    Wymore, A.W.: Model-Based Systems Engineering. CRC Press, Boca Raton (1993)Google Scholar
  3. 3.
    SysML, OMG Systems Modeling Language (OMG SysML™) V1.5 (2017). Accessed 15 Jan 2019
  4. 4.
    Friedenthal, S., Moore, A., Steiner, R.: A practical guide to SysML: the system modeling language. Morgan Kaufman, Burlington (2014)Google Scholar
  5. 5.
    Chern, M.S.: On the computational complexity of reliability redundancy allocation in a series system. Oper. Res. Lett. 11(15), 309–315 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Coit, D.W., Smith, A.E.: Optimization approaches to the redundancy allocation problem for series-parallel systems. In: Proceedings of Fourth Industrial Engineering Research Conference Proceedings, pp. 342–349 (1995)Google Scholar
  7. 7.
    Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Olsen, G.K., Svendsen, A.: Adding standardized variability to domain specific languages. In: Proceedings of Software Product Line Conference, pp. 139–148 (2008)Google Scholar
  8. 8.
    Das, I.: A preference ordering among various Pareto optimal alternatives. Struct Optim 18(11), 30–35 (1999)CrossRefGoogle Scholar
  9. 9.
    CHOCO, Choco solver, EMN (2016). Accessed 2016
  10. 10.
    Perez, R.E., Jansen, P.W., Martins, J.R.: pyOpt: a Python-based object-oriented framework for nonlinear constrained optimization. Struct. Multidiscip. Optim. 45(11), 101–118 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    UML2, OMG. OMG Unified Modeling Language (OMG UML™) V2.5 (2007). Accessed 15 Jan 2019
  12. 12.
    Limbourg, P., Kochs, H.D.: Multi-objective optimization of generalized reliability design problems using feature models: a concept for early design stages. Reliab. Eng. Syst. Saf. 93(16), 815–828 (2008)CrossRefGoogle Scholar
  13. 13.
    Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.: Software architecture optimization methods: a systematic literature review. IEEE Trans. Softw. Eng. 39, 658–683 (2013)CrossRefGoogle Scholar
  14. 14.
    Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  15. 15.
    Jussien, N., Rochart, G., Lorca, X.: Choco: an open source java constraint programming library. In: CPAIOR’08 Workshop on Open-Source Software for Integer and Constraint Programming (OSSICP’08), pp. 1–10 (2008)Google Scholar
  16. 16.
    Svahnberg, M., Van Gurp, J., Bosch, J.: A taxonomy of variability realization techniques. Softw. Pract. Exp. 35(18), 705–754 (2005)CrossRefGoogle Scholar
  17. 17.
    Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Domain Analysis (FODA) Feasibility Study. Software Engineering Institute, Carnegie Mellon University, Pittsburgh (1990)CrossRefGoogle Scholar
  18. 18.
    Reinhartz-Berger, I., Figl, K.: Comprehensibility of orthogonal variability modeling languages: the cases of CVL and OVM. In: Proceedings of the 18th International Software Product Line Conference, vol. 1, pp. 42–51 (2014)Google Scholar
  19. 19.
    Feiler, P.H., Gluch, D.P., Hudak, J.J.: The Architecture Analysis and Design Language (AADL): An Introduction. Software Engineering Institute, Carnegie Mellon University, Pittsburgh (2006)Google Scholar
  20. 20.
    Selic, B., Gérard, S.: Modeling and Analysis of Real-time and Embedded Systems with UML and MARTE. Morgan Kaufmann, Burlington (2014)Google Scholar
  21. 21.
    Eclipse, Eclipse modeling framework (2016). Accessed 15 Jan 2019
  22. 22.
    Papyrus, Outil Papyrus, CEA (2015). Accessed 15 Jan 2019
  23. 23.
    Gent, I.P., Jefferson, C., Miguel, I.: Minion: a fast scalable constraint solver. In: ECAI (2006)Google Scholar
  24. 24.
    Granvilliers, L., Benhamou, F.: Algorithm 852: Realpaver: an interval solver using constraint satisfaction techniques. ACM Trans. Math. Softw. (TOMS) 32(11), 138–156 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Niemeyer, G.: Constraint solving problem resolver for Python. (2016). Accessed 15 Jan 2019
  26. 26.
    Apt, K.R., Wallace, M.: Logic Programming Using ECLiPSe. Cambridge University Press, Cambridge (2006)Google Scholar
  27. 27.
    How, J.P., Fraser, C., Kulling, K.C., Bertuccelli, L.F., Toupet, O., Brunet, L., Bachrach, A., Roy, N.: Increasing autonomy of UAVs. Robot. Autom. Mag. 16(12), 43–51 (2009)CrossRefGoogle Scholar
  28. 28.
    Weatherington, D., Deputy, U.: Unmanned aircraft systems roadmap, 2005-2030, Deputy, UAV Planning Task Force, OUSD (AT&L) (2005)Google Scholar
  29. 29.
    Leserf, P., de Saqui-Sannes, P., Hugues, J.: Multi-domain optimization with SysML modeling. In: Proceedings of ETFA 20th IEEE Conference, Luxembourg, pp. 1–8. IEEE (2015)Google Scholar
  30. 30.
    Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt Publishing Ltd., Birmingham (2013)Google Scholar
  31. 31.
    Leserf, P., de Saqui-Sannes, P., Hugues, J., Chaaban, K.: Architecture optimization with SysML modeling a case study using variability. In: MDE and Software Developement-CCIS, vol. 580. Springer (2015)Google Scholar
  32. 32.
    Min, B.I., Kerzhner, A.A., Paredis, C.J.: Process integration and design optimization for model-based systems engineering with SysML. In: ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 1361–1369 American Society of Mechanical Engineers (2011)Google Scholar
  33. 33.
    Herrera, F., Posadas, H., Penil, P., Villar, E., Ferrero, F., Valencia, R., Palermo, G.: The COMPLEX methodology for UML/MARTE modeling and design space exploration of embedded systems. J. Syst. Arch. 60, 55–78 (2014)CrossRefGoogle Scholar
  34. 34.
    MARTE, UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded Systems V1.1 (2011). Accessed 15 Jan 2019

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Patrick Leserf
    • 1
    Email author
  • Pierre de Saqui-Sannes
    • 2
  • Jérôme Hugues
    • 2
  1. 1.ESTACA’LabLavalFrance
  2. 2.ISAE-SUPAEROUniversité de ToulouseToulouseFrance

Personalised recommendations