Software & Systems Modeling

, Volume 18, Issue 2, pp 1135–1154 | Cite as

Managing time-awareness in modularized processes

  • Roberto PosenatoEmail author
  • Andreas Lanz
  • Carlo Combi
  • Manfred Reichert
Special Section Paper


Managing temporal process constraints in a suitable way is crucial for long-running business processes in many application domains. However, proper support of time-aware processes is still missing in contemporary information systems. This paper tackles a particular challenge existing in this context, namely the handling of temporal constraints for modularized processes (i.e., processes comprising subprocesses), which shall enable both the reuse of process knowledge and the modular design of complex processes. In detail, this paper focuses on the representation and support of time-aware modularized processes in process-aware information systems. To this end, we present a sound and complete method to derive the duration restrictions of a time-aware (sub-)process in such a way that its temporal properties are completely specified. We then show how this characterization of a process can be utilized when reusing it as a subprocess within a modularized process. As a motivating example, we consider a compound process from healthcare. Altogether the proper handling of temporal constraints for modularized processes is crucial for the enhancement of time- and process-aware information systems.


Process-aware information system Temporal constraints Subprocess Process modularity Controllability 


  1. 1.
    Bettini, C., Wang, X.S., Jajodia, S.: Temporal reasoning in workflow systems. Distrib. Parallel Databases 11(3), 269–306 (2002). CrossRefzbMATHGoogle Scholar
  2. 2.
    Combi, C., Gambini, M., Migliorini, S., Posenato, R.: Representing business processes through a temporal data-centric workflow modeling language: an application to the management of clinical pathways. IEEE Trans. Syst. Man Cybern. Syst. 44(9), 1182–1203 (2014). CrossRefGoogle Scholar
  3. 3.
    Combi, C., Gozzi, M., Posenato, R., Pozzi, G.: Conceptual modeling of flexible temporal workflows. ACM Trans. Auton. Adapt. Syst. (TAAS) 7(2), 19:1–19:29 (2012). Google Scholar
  4. 4.
    Combi, C., Hunsberger, L., Posenato, R.: An algorithm for checking the dynamic controllability of a conditional simple temporal network with uncertainty. In: ICAART 2013—Proceeding of the 5th international conference on agents and artificial intelligence, vol. 2, pp. 144–156. SciTePress (2013).
  5. 5.
    Combi, C., Hunsberger, L., Posenato, R.: An algorithm for checking the dynamic controllability of a conditional simple temporal network with uncertainty - revisited. In: Filipe, J., Fred, A.L.N. (eds.) Agents and artificial intelligence—5th international conference, ICAART 2013, Barcelona, Spain, February 15–18, 2013. Revised Selected Papers, Communications in Computer and Information Science, vol. 449, pp. 314–331. Springer (2013).
  6. 6.
    Combi, C., Posenato, R.: Controllability in temporal conceptual workflow schemata. In: Business process management, 7th international conference, BPM 2009, Ulm, Germany, September 8–10, 2009. Proceedings, LNCS, vol. 5701, pp. 64–79. Springer (2009).
  7. 7.
    Combi, C., Posenato, R.: Towards temporal controllabilities for workflow schemata. In: Markey, N., Wijsen, J. (eds.) 17th international symposium on temporal representation and reasoning (TIME 2010), pp. 129–136. IEEE Computer Society (2010).
  8. 8.
    Cruz-Jentoft, A., Baeyens, J., Bauer, J., et al.: Sarcopenia: European consensus on definition and diagnosis. Age Ageing 39(4), 412–423 (2010). CrossRefGoogle Scholar
  9. 9.
    Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49(1–3), 61–95 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Eder, J., Gruber, W., Panagos, E.: Temporal modeling of workflows with conditional execution paths. In: Proceedings of DEXA’00, pp. 243–253. Springer (2000)Google Scholar
  11. 11.
    Eder, J., Panagos, E., Rabinovich, M.: Time Constraints in Workflow Systems, pp. 191–205. Springer, Berlin (2013). Google Scholar
  12. 12.
    Eder, J., Panagos, E., Rabinovich, M.: Workflow time management revisited. In: Seminal contributions to information systems engineering, pp. 207–213. Springer, Berlin (2013).
  13. 13.
    Eder, J., Pichler, H.: Duration histograms for workflow systems. In: Rolland, C., Brinkkemper, S., Saeki, M. (eds.) Proceedings of the working conference on engineering information systems in the internet context (IFIP TC8/WG8.1), IFIP conference proceedings, vol. 231, pp. 239–253. Kluwer, B.V. (2002)Google Scholar
  14. 14.
    Eder, J., Pichler, H., Gruber, W., Ninaus, M.: Personal schedules for workflow systems. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) Proceedings of the 1st international conference on business process management (BPM’03), Lecture Notes in Computer Science, vol. 2678, pp. 216–231. Springer (2003).
  15. 15.
    Haselkorn, J., Hughes, C., Rae-Grant, A., et al.: Summary of comprehensive systematic review: rehabilitation in multiple sclerosis. Neurology 85(21), 1896–1903 (2015). CrossRefGoogle Scholar
  16. 16.
    Hochberg, M.C., et al.: American college of rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res. 64(4), 465–474 (2012)CrossRefGoogle Scholar
  17. 17.
    Lanz, A., Posenato, R., Combi, C., Reichert, M.: Controllability of time-aware processes at run time. In: Meersman, R., Panetto, H., Dillon, T.S., Eder, J., Bellahsene, Z., Ritter, N., Leenheer, P.D., Dou, D. (eds.) On the move to meaningful internet systems: OTM 2013 conference-confederated international conference: CoopIS, DOA-Trusted Cloud, and ODBASE, Lecture Notes in Computer Science, vol. 8185, pp. 39–56. Springer (2013).
  18. 18.
    Lanz, A., Posenato, R., Combi, C., Reichert, M.: Simple temporal networks with partially shrinkable uncertainty. In: Loiseau, S., Filipe, J., Duval, B., van den Herik, H.J. (eds.) ICAART 2015—Proceedings of the international conference on agents and artificial intelligence, vol. 2, Lisbon, Portugal, 10–12 January, 2015., pp. 370–381. SciTePress (2015).
  19. 19.
    Lanz, A., Posenato, R., Combi, C., Reichert, M.: Controlling Time-Awareness in Modularized Processes. In: Enterprise, Business-Process and Information Systems Modeling - 17th International conference, BPMDS 2016, 21st international conference, EMMSAD 2016, Lecture Notes in Business Information Processing, vol. 248, pp. 157–172 (2016).
  20. 20.
    Lanz, A., Reichert, M.: Dealing with changes of time-aware processes. In: Proceedings of BPM’14, LNCS, vol. 8659, pp. 217–233 (2014)Google Scholar
  21. 21.
    Lanz, A., Reichert, M.: Enabling time-aware process support with the atapis toolset. In: Proceedings of BPM’14 demo track (2014)Google Scholar
  22. 22.
    Lanz, A., Reichert, M., Weber, B.: A formal semantics of time patterns for process-aware information systems. Technical Represents UIB-2013-02, University of Ulm (2013)Google Scholar
  23. 23.
    Lanz, A., Reichert, M., Weber, B.: Process time patterns: a formal foundation. Inf. Syst. 57, 38–68 (2016). CrossRefGoogle Scholar
  24. 24.
    Lanz, A., Weber, B., Reichert, M.: Time patterns for process-aware information systems. Requir. Eng. 19(2), 113–141 (2014). CrossRefGoogle Scholar
  25. 25.
    Marjanovic, O., Orlowska, M.E.: On modeling and verification of temporal constraints in production workflows. Knowl. Inf. Syst. 1(2), 157–192 (1999)CrossRefGoogle Scholar
  26. 26.
    Monti, E., Mottes, M., Fraschini, P., Brunelli, P., Forlino, A., Venturi, G., Doro, F., Perlini, S., Cavarzere, P., Antoniazzi, F.: Current and emerging treatments for the management of osteogenesis imperfecta. Ther. Clin. Risk Manag. 6, 367 (2010)Google Scholar
  27. 27.
    Morris, P.: A structural characterization of temporal dynamic controllability. In: F. Benhamou (ed.) International conference on principles and practices of constraint programming (CP’06), pp. 375–389. Springer (2006)Google Scholar
  28. 28.
    Morris, P.: Dynamic controllability and dispatchability relationships. In: Simonis, H. (ed.) International conference on integration of AI and OR techniques in constraint programming (CPAIOR’14), LNCS, vol. 8451, pp. 464–479. Springer (2014)Google Scholar
  29. 29.
    Morris, P.H., Muscettola, N.: Temporal dynamic controllability revisited. In: National conference on artificial intelligence (AAAI’05), pp. 1193–1198 (2005)Google Scholar
  30. 30.
    Morris, P.H., Muscettola, N., Vidal, T.: Dynamic control of plans with temporal uncertainty. In: International joint conference on artificial intelligence (IJCAI’01), pp. 494–502. Morgan Kaufmann (2001)Google Scholar
  31. 31.
    Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Systems—Challenges, Methods, Technologies. Springer, Berlin (2012). CrossRefzbMATHGoogle Scholar
  32. 32.
    Reijers, H.A.: Design and Control of Workflow Processes. Springer, Berlin (2003)CrossRefzbMATHGoogle Scholar
  33. 33.
    Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data Knowl. Eng. 68(9), 793–818 (2009). CrossRefGoogle Scholar
  34. 34.
    Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring large process model repositories. Comput. Ind. 62(5), 467–486 (2011). CrossRefGoogle Scholar
  35. 35.
    Zhang, Y., Perry, D.E.: A Data-Centric Approach to Optimize Time in Workflow-Based Business Process. In: 2014 IEEE international conference on services computing, pp. 709–716. IEEE (2014).

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Databases and Information SystemsUlm UniversityUlmGermany
  2. 2.Department of Computer ScienceUniversity of VeronaVeronaItaly

Personalised recommendations