Advertisement

Software & Systems Modeling

, Volume 17, Issue 2, pp 675–693 | Cite as

Mining team compositions for collaborative work in business processes

  • Stefan Schönig
  • Cristina Cabanillas
  • Claudio Di Ciccio
  • Stefan Jablonski
  • Jan Mendling
Special Section Paper

Abstract

Process mining aims at discovering processes by extracting knowledge about their different perspectives from event logs. The resource perspective (or organisational perspective) deals, among others, with the assignment of resources to process activities. Mining in relation to this perspective aims to extract rules on resource assignments for the process activities. Prior research in this area is limited by the assumption that only one resource is responsible for each process activity, and hence, collaborative activities are disregarded. In this paper, we leverage this assumption by developing a process mining approach that is able to discover team compositions for collaborative process activities from event logs. We evaluate our novel mining approach in terms of computational performance and practical applicability.

Keywords

Business process management Declarative process mining Event log analysis Resource perspective Teamwork 

References

  1. 1.
    Adamo, J.: Data Mining for Association Rules and Sequential Patterns—Sequential and Parallel Algorithms. Springer, Berlin (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Buneman, P., Jajodia, S. (eds.) International Conference on Management of Data, pp. 207–216. ACM Press, Washington, D.C. (1993)Google Scholar
  3. 3.
    Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., Leonardi, S.: Power in unity: forming teams in large-scale community systems. In: Huang, J., Koudas, N., Jones, G.J.F., Wu, X., Collins-Thompson, K., An, A. (eds.) CIKM, pp. 599–608. ACM Press, Ontario (2010)Google Scholar
  4. 4.
    Baumgrass, A., Strembeck, M.: Bridging the gap between role mining and role engineering via migration guides. Inf. Sec. Tech. Rep. 17(4), 148–172 (2013)CrossRefGoogle Scholar
  5. 5.
    Baykasoglu, A., Dereli, T., Das, S.: Project team selection using fuzzy optimization approach. Cybern. Syst. 38(2), 155–185 (2007)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bose, J.C., Maggi, F.M., van der Aalst, W.: Enhancing declare maps based on event correlations. In: Daniel, F., Wang, J., Weber, B. (eds.) Business Process Management. Lecture Notes in Computer Science, pp. 97–112. Springer, Berlin (2013)Google Scholar
  7. 7.
    Bussler, C.: Organisationsverwaltung in Workflow-Management-Systemen. Dt. University-Verlag, Wiesbaden (1998)CrossRefzbMATHGoogle Scholar
  8. 8.
    Cabanillas, C., Resinas, M., Mendling, J., Cortés, A.R.: Automated team selection and compliance checking in business processes. In: Pfahl, D., Bendraou, R., Turner, R., Kuhrmann, M., Hebig, R., Maggi, F.M. (eds.) Proceedings of the International Conference on Software and System Process (ICSSP), pp. 42–51. ACM, New York (2015)Google Scholar
  9. 9.
    Datta, A., Yong, J.T.T., Ventresque, A.: T-RecS: team recommendation system through expertise and cohesiveness. In: Srinivasan, S., Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) Proceedings of the 20th International Conference on World Wide Web (WWW), pp. 201–204. ACM, Hyderabad (2011)Google Scholar
  10. 10.
    Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive processes: characteristics, requirements and analysis of contemporary approaches. J. Data Semant. 4(1), 29–57 (2015)CrossRefGoogle Scholar
  11. 11.
    Dorn, C., Dustdar, S.: Composing near-optimal expert teams: a trade-off between skills and connectivity. In: Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM, pp. 472–489. Springer, Berlin (2010)Google Scholar
  12. 12.
    Dorn, C., Skopik, F., Schall, D., Dustdar, S.: Interaction mining and skill-dependent recommendations for multi-objective team composition. Data Knowl. Eng. 70(10), 866–891 (2011)CrossRefGoogle Scholar
  13. 13.
    Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Berlin (2013)CrossRefGoogle Scholar
  14. 14.
    Dustdar, S.: Caramba: process-aware collaboration system supporting Ad hoc and collaborative processes in virtual teams. Distrib. Parallel Databases 15(1), 45–66 (2004)CrossRefzbMATHGoogle Scholar
  15. 15.
    Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organizational view of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J. (eds.) Agent-Oriented Software Engineering IV, pp. 214–230. Springer, Berlin (2003)Google Scholar
  16. 16.
    Fitzpatrick, E.L., Askin, R.G.: Forming effective worker teams with multi-functional skill requirements. Comput. Ind. Eng. 48, 593–608 (2005)CrossRefGoogle Scholar
  17. 17.
    Forgy, C.: Rete: a fast algorithm for the many pattern/many object pattern match problem. Artif. Intell. 19(1), 17–37 (1982)CrossRefGoogle Scholar
  18. 18.
    Guimarães, N., Antunes, P., Pereira, A.: The integration of workflow systems and collaboration tools. In: Doğaç, A., Kalinichenko, L., Tamer Özsu, M., Sheth, A. (eds.) Workflow Management Systems and Interoperability, NATO ASI Series, vol. 164, pp. 222–245. Springer (1998)Google Scholar
  19. 19.
    Hanachi, C., Gaaloul, W., Mondi, R.: Performative-based mining of workflow organizational structures. In: Huemer, C., Lops, P. (eds.) EC-Web, pp. 63–75. Springer, Vienna (2012)Google Scholar
  20. 20.
    Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. Knowl. Eng. Rev. 19(4), 281–316 (2004)CrossRefGoogle Scholar
  21. 21.
    Jin, T., Wang, J., Wen, L.: Organizational modeling from event logs. In: Sixth International Conference on Grid and Cooperative Computing (GCC), pp. 670–675. IEEE, Urumchi (2007)Google Scholar
  22. 22.
    Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: RoboCup: the robot world cup initiative. In: International Conference on Autonomous Agents, pp. 340–347 (1997)Google Scholar
  23. 23.
    Lappas, T., Liu, K., Terzi, E.: Finding a Team of Experts in Social Networks. In: Elder, J.F. IV., Fogelman-Soulie, F., Flach, P.A., Zaki, M.J. (eds.) Proceedings of the 15th International Conference on Knowledge Discovery and Data Mining, pp. 467–476. ACM, Paris (2009)Google Scholar
  24. 24.
    Leitner, M., Baumgrass, A., Schefer-Wenzl, S., Rinderle-Ma, S., Strembeck, M.: A case study on the suitability of process mining to produce current-state RBAC models. In: BPM Workshops, pp. 719–724 (2012)Google Scholar
  25. 25.
    Ly, L.T., Rinderle, S., Dadam, P., Reichert, M.: Mining staff assignment rules from event-based data. In: BPM Workshops, pp. 177–190 (2006)Google Scholar
  26. 26.
    Maggi, F.M., Bose, J.C., van der Aalst, W.: Efficient discovery of understandable declarative process models from event logs. In: Ralyte, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) Advanced Information Systems Engineering (CAiSE), pp. 270–285. Springer, Switzerland (2012)Google Scholar
  27. 27.
    Meyer, A.: Resource Perspective in BPMN - Extending BPMN to Support Resource Management and Planning. Master’s thesis, Hasso Plattner Institute (2009)Google Scholar
  28. 28.
    Nakatumba, J., van der Aalst, W.: Analyzing resource behavior using process mining. In: BPM Workshops, pp. 69–80 (2010)Google Scholar
  29. 29.
    Nurcan, S.: Analysis and design of co-operative work processes: a framework. Inf. Softw. Technol. 40(3), 143–156 (1998)CrossRefGoogle Scholar
  30. 30.
    OMG: BPMN 2.0. Recommendation, OMG (2011)Google Scholar
  31. 31.
    Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow resource patterns: identification, representation and tool support. In: Pastor, O., Falcão e Cunha, J. (eds.) Advanced Information Systems Engineering (CAiSE), pp. 216–232. Springer, (2005)Google Scholar
  32. 32.
    Salas, E., Stagl, K.C., Burke, C.S., Goodwin, G.F.: Fostering team effectiveness in organizations: toward an integrative theoretical framework. Neb. Symp. Motiv. 52, 185–243 (2007)Google Scholar
  33. 33.
    Schönig, S., Cabanillas, C., Jablonski, S., Mendling, J.: Mining the organisational perspective in agile business processes. BPMDS 214, 37–52 (2015)Google Scholar
  34. 34.
    Singh, P.V.: The small-world effect: the influence of macro-level properties of developer collaboration networks on open-source project success. ACM Trans. Softw. Eng. Methodol. 20(2), 6:1–6:27 (2010)CrossRefGoogle Scholar
  35. 35.
    Song, M., Van der Aalst, W.M.: Towards comprehensive support for organizational mining. Decis. Support Syst. 46(1), 300–317 (2008)CrossRefGoogle Scholar
  36. 36.
    Tambe, M.: Teamwork in Real-World, Dynamic Environments. University of Southern California, Information Sciences Institute (1996)Google Scholar
  37. 37.
    Tambe, M., Adibi, J., Al-Onaizan, Y., Erdem, A., Kaminka, G.A., Marsella, S.C., Muslea, I.: Building agent teams using an explicit teamwork model and learning. Artif. Intell. 110(2), 215–239 (1999)CrossRefzbMATHGoogle Scholar
  38. 38.
    van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  39. 39.
    van der Aalst, W.M.P., Kumar, A.: A reference model for team-enabled workflow management systems. Data Knowl. Eng. 38(3), 335–363 (2001)CrossRefzbMATHGoogle Scholar
  40. 40.
    Van Der Aalst, W.M., Reijers, H.A., Song, M.: Discovering social networks from event logs. CSCW 14(6), 549–593 (2005)Google Scholar
  41. 41.
    Van Der Aalst, W.M., Ter Hofstede, A.H.: Yawl: yet another workflow language. Inf. Syst. 30(4), 245–275 (2005)CrossRefGoogle Scholar
  42. 42.
    Verbeek, E., Buijs, J., van Dongen, B., van der Aalst, W.: XES, xESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) Information Systems Evolution, pp. 60–75. Springer, Berlin (2011)Google Scholar
  43. 43.
    Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer, Berlin (2012)CrossRefGoogle Scholar
  44. 44.
    Yang, D.N., Chen, Y.L., Lee, W.C., Chen, M.S.: On social-temporal group query with acquaintance constraint. Proc. VLDB Endow. 4(6), 397–408 (2011)CrossRefGoogle Scholar
  45. 45.
    Zeising, M., Schönig, S., Jablonski, S.: Towards a common platform for the support of routine and agile business processes. In: Bertino, E., Chen, S.-C., Aberer, K., Krishnamurthy, P., Kantarcioglu, M. (eds.) Collaborative Computing: Networking, Applications and Worksharing, pp. 94–103. ICST/IEEE, Miami (2014)Google Scholar
  46. 46.
    Zhao, W., Zhao, X.: Process mining from the organizational perspective. In: Wen, Z., Li, T. (eds.) Foundations of Intelligent Systems, pp. 701–708. Springer, Berlin (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Stefan Schönig
    • 1
  • Cristina Cabanillas
    • 1
  • Claudio Di Ciccio
    • 1
  • Stefan Jablonski
    • 2
  • Jan Mendling
    • 1
  1. 1.Vienna University of Economics and BusinessViennaAustria
  2. 2.University of BayreuthBayreuthGermany

Personalised recommendations