Software & Systems Modeling

, Volume 17, Issue 3, pp 779–813 | Cite as

Quick fixing ATL transformations with speculative analysis

  • Jesús Sánchez Cuadrado
  • Esther Guerra
  • Juan de Lara
Special Section Paper


Model transformations are central components of most model-based software projects. While ensuring their correctness is vital to guarantee the quality of the solution, current transformation tools provide limited support to statically detect and fix errors. In this way, the identification of errors and their correction are nowadays mostly manual activities which incur in high costs. The aim of this work is to improve this situation. Recently, we developed a static analyser that combines program analysis and constraint solving to identify errors in ATL model transformations. In this paper, we present a novel method and system that uses our analyser to propose suitable quick fixes for ATL transformation errors, notably some non-trivial, transformation-specific ones. Our approach supports speculative analysis to help developers select the most appropriate fix by creating a dynamic ranking of fixes, reporting on the consequences of applying a quick fix, and providing a pre-visualization of each quick fix application. The approach integrates seamlessly with the ATL editor. Moreover, we provide an evaluation based on existing faulty transformations built by a third party, and on automatically generated transformation mutants, which are then corrected with the quick fixes of our catalogue.


Model transformation ATL Transformation static analysis Quick fixes Speculative analysis 



Work supported by the Spanish Ministry of Economy and Competitivity (TIN2014-52129-R), the R&D programme of the Madrid Region (S2013/ICE-3006), and the EU commission (FP7-ICT-2013-10, #611125).


  1. 1.
    Abraham, R., Erwig, M.: GoalDebug: a spreadsheet debugger for end users. In: ICSE, pp. 251–260. IEEE Computer Society (2007)Google Scholar
  2. 2.
    Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced concepts and tools for in-place EMF model transformations. In: MoDELS, vol. 6394 of LNCS, pp. 121–135. Springer, Berlin (2010)Google Scholar
  3. 3.
    Brun, Y, Holmes, R, Ernst, M.D., Notkin ,D.: Speculative analysis: exploring future development states of software. In: FoSER, pp. 59–64. ACM (2010)Google Scholar
  4. 4.
    Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Synthesis of OCL pre-conditions for graph transformation rules. In: ICMT, vol. 6142 of LNCS, pp. 45–60. Springer, Berlin (2010)Google Scholar
  5. 5.
    Cibran, M.A.: Translating BPMN models into UML activities. In: Business Process Management Workshops, pp. 236–247. Springer, Berlin (2009)Google Scholar
  6. 6.
    Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string metrics for matching names and records. In: KDD Workshop on Data Cleaning and Object Consolidation vol. 3, pp. 73–78 (2003)Google Scholar
  7. 7.
    Deckwerth, F., Varró, G.: Attribute handling for generating preconditions from graph constraints. In: ICGT, vol. 8571 of LNCS, pp. 81–96. Springer, Berlin (2014)Google Scholar
  8. 8.
    Demarco, F., Xuan, J, Berre, D.L., Monperrus, M.: Automatic repair of buggy if conditions and missing preconditions with SMT. In: CSTVA, pp. 30–39. ACM (2014)Google Scholar
  9. 9.
    Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987)CrossRefzbMATHGoogle Scholar
  10. 10.
    Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger, W.: Automated verification of model transformations based on visual contracts. Autom. Softw. Eng. 20(1), 5–46 (2013)CrossRefGoogle Scholar
  11. 11.
    Guerra, E., Soeken, M.: Specification-driven model transformation testing. Softw. Syst. Model. 14(2), 623–644 (2015)CrossRefGoogle Scholar
  12. 12.
    Hegedüs, Á., Horváth, Á., Ráth, I., Branco, M. C., Varró, D.: Quick fix generation for DSMLs. In: VL/HCC, pp. 17–24. IEEE (2011)Google Scholar
  13. 13.
    Jeffrey, D., Feng, M., Gupta, N., Gupta, R.: BugFix: a learning-based tool to assist developers in fixing bugs. In: ICPC, pp. 70–79. IEEE Computer Society (2009)Google Scholar
  14. 14.
    Jézéquel, J.-M., Barais, O., Fleurey, F.: Model driven language engineering with kermeta. In GTTSE’09, vol. 6491 of LNCS, pp. 201–221. Springer, Berlin (2011)Google Scholar
  15. 15.
    Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool. Sci. Comput. Program. 72(1), 31–39 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kaleeswaran, S., Tulsian, V., Kanade, A., Orso, A.: MintHint: automated synthesis of repair hints. In: ICSE, pp. 266–276. ACM (2014)Google Scholar
  17. 17.
    Köhler, C., Lewin, H., Taentzer, G.: Ensuring containment constraints in graph-based model transformation approaches. In: ECEASST vol. 6 (2007)Google Scholar
  18. 18.
    Kolovos, D.S., Paige, R.F., Polack, F.: The epsilon transformation language. In: ICMT, vol. 5063 of LNCS, pp. 46–60. Springer, Berlin (2008)Google Scholar
  19. 19.
    Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of OCL models by integrating SAT solving into USE. In: TOOLS (49), vol. 6705 of LNCS, pp. 290–306. Springer, Berlin (2011)Google Scholar
  20. 20.
    Kusel, A., Schwinger, W., Wimmer, M., Retschitzegger, W.: Common pitfalls of using QVT relations - graphical debugging as remedy. In: ICECCS, pp. 329–334. IEEE (2009)Google Scholar
  21. 21.
    Le Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W.: A systematic study of automated program repair: fixing 55 out of 105 bugs for $8 each. In: ICSE, pp. 3–13. IEEE (2012)Google Scholar
  22. 22.
    Le Goues, C., Forrest, S., Weimer, W.: Current challenges in automatic software repair. Softw. Qual. J. 21(3), 421–443 (2013)CrossRefGoogle Scholar
  23. 23.
    Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: Genprog: a generic method for automatic software repair. IEEE TSE 38(1), 54–72 (2012)Google Scholar
  24. 24.
    Logozzo, F., Ball, T.: Modular and verified automatic program repair. In: OOPSLA, pp. 133–146. ACM (2012)Google Scholar
  25. 25.
    Martinez, M., Monperrus, M.: Mining software repair models for reasoning on the search space of automated program fixing. Empir. Softw. Eng. 20(1), 176–205 (2015)CrossRefGoogle Scholar
  26. 26.
    Martinez, M., Weimer, W., Monperrus, M.: Do the fix ingredients already exist? An empirical inquiry into the redundancy assumptions of program repair approaches. In: ICSE, pp. 492–495. ACM (2014)Google Scholar
  27. 27.
    Muntean, P., Kommanapalli, V., Ibing, A., Eckert, C.: Automated generation of buffer overflow quick fixes using symbolic execution and SMT. In: SAFECOMP, vol. 9337 of LNCS, pp. 441–456. Springer, Berlin (2015)Google Scholar
  28. 28.
    Muslu, K., Brun, Y., Holmes, R., Ernst, M.D., Notkin, D.: Speculative analysis of integrated development environment recommendations. In: OOPSLA, pp. 669–682. ACM (2012)Google Scholar
  29. 29.
    Pei, Y., Furia, C.A., Nordio, M., Wei, Y., Meyer, B., Zeller, A.: Automated fixing of programs with contracts. IEEE TSE 40(5), 427–449 (2014)Google Scholar
  30. 30.
    Perkins, J.H., Kim, S., Larsen, S., Amarasinghe, S.P., Bachrach, J., Carbin, M., Pacheco, C., Sherwood, F., Sidiroglou, S., Sullivan, G., Wong, W., Zibin, Y., Ernst, M.D., Rinard, M.C.: Automatically patching errors in deployed software. In: SOSP, pp. 87–102. ACM (2009)Google Scholar
  31. 31.
    Proksch, S., Amann, S., Mezini, M.: Towards standardized evaluation of developer-assistance tools. In: RSSE, pp. 14–18. ACM (2014)Google Scholar
  32. 32.
  33. 33.
    Rahim, L.A., Whittle, J.: A survey of approaches for verifying model transformations. Softw. Syst. Model. 14(2), 1003–1028 (2015)CrossRefGoogle Scholar
  34. 34.
    Robillard, M.P., Walker, R.J., Zimmermann, T.: Recommendation systems for software engineering. IEEE Softw. 27(4), 80–86 (2010)CrossRefGoogle Scholar
  35. 35.
    Sánchez Cuadrado, J., Guerra, E., de Lara, J.: Uncovering errors in ATL model transformations using static analysis and constraint solving. In: ISSRE, pp. 34–44. IEEE (2014)Google Scholar
  36. 36.
    Sánchez Cuadrado, J., Guerra, E.,  de Lara, J.: Quick fixing ATL model transformations. In: MoDELS, pp. 146–155. IEEE (2015)Google Scholar
  37. 37.
    Varró, D., Balogh, A.: The model transformation language of the viatra2 framework. Sci. Comput. Program. 68(3), 214–234 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches using genetic programming. In: ICSE, pp. 364–374. IEEE (2009)Google Scholar
  39. 39.
    Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger, W.: Right or wrong?—verification of model transformations using colored petri nets. In: DSM (2009)Google Scholar
  40. 40.
    Wimmer, M., Perez, S., Jouault, F., Cabot, J.: A catalogue of refactorings for model-to-model transformations. JOT 11(2), 1–40 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jesús Sánchez Cuadrado
    • 1
  • Esther Guerra
    • 1
  • Juan de Lara
    • 1
  1. 1.Computer Science DepartmentUniversidad Autónoma de MadridMadridSpain

Personalised recommendations