Software & Systems Modeling

, Volume 16, Issue 1, pp 279–306 | Cite as

An empirical approach toward the resolution of conflicts in goal-oriented models

  • Jameleddine Hassine
  • Daniel Amyot
Regular Paper


One significant problem requirements engineers have to cope with is the management of unclear requirements, ambiguities, and conflicts that may arise between stakeholders. Such issues may be desirable since they may allow for further elicitation of requirements that would have been missed otherwise. Goal models capture the objectives and other intentions of different stakeholders, together with their relationships. They can be used to refine unclear requirements and to detect conflicts and ambiguities early during model validation. However, resolving such ambiguities and conflicts is key for the successful implementation of the goal models. In this paper, we propose a novel approach to validate models in the Goal-oriented Requirement Language and resolve conflicts between the perspectives of intervening stakeholders (and especially between stakeholders of a given group). Our approach is based on a statistical analysis of empirical data that we collect from surveys designed for each group of stakeholders. We apply concept analysis in order to fix goal-model artifacts that are subject to conflict. We illustrate our approach using a case study of a goal model describing the involvement of undergraduate students in university research activities.


Goal model Conflict resolution GRL Statistical analysis Empirical analysis Concept analysis 


  1. 1.
    Akhigbe, O., Alhaj, M., Amyot, D., Badreddin, O., Braun, E., Cartwright, N., Richards, G., Mussbacher, G.: Creating quantitative goal models: governmental experience. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) Conceptual Modeling, Lecture Notes in Computer Science, vol. 8824, pp. 466–473. Springer International Publishing, Switzerland (2014). doi: 10.1007/978-3-319-12206-9_40
  2. 2.
    Almeida, C., Goulão, M., Araújo, J.: A systematic comparison of i* modelling tools based on syntactic and well-formedness rules. In: Castro, J. , Horkoff, J., Maiden, N.A.M., Yu, E.S.K. (eds.) iStar, CEUR Workshop Proceedings, vol. 978, pp. 43–48. (2013)Google Scholar
  3. 3.
    Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.: Evaluating goal models within the goal-oriented requirement language. Int. J. Intell. Syst. 25, 841–877 (2010). doi: 10.1002/int.v25:8 CrossRefGoogle Scholar
  4. 4.
    Amyot, D., Horkoff, J., Gross, D., Mussbacher, G.: A lightweight GRL profile for i* modeling. In: Proceedings of the ER 2009 Workshops (CoMoL, ETheCoM, FP-UML, MOST-ONISW, QoIS, RIGiM, SeCoGIS) on Advances in Conceptual Modeling—Challenging Perspectives, ER’09, pp. 254–264. Springer, Berlin (2009). doi: 10.1007/978-3-642-04947-7_31
  5. 5.
    Ayala, C.P., Cares, C., Carvallo, J.P., Grau, G., Haya, M., Salazar, G., Franch, X., Mayol, E., Quer, C.: A comparative analysis of i*-based agent-oriented modeling languages. In: Proceedings of the 17th International Conference on Software Engineering and Knowledge Engineering (SEKE’2005), Taipei, Taiwan, Republic of China, July 14–16, pp. 43–50 (2005)Google Scholar
  6. 6.
    Boehm, B., Bose, P., Horowitz, E., Lee, M.J.: Software requirements negotiation and renegotiation aids. In: Proceedings of the 17th International Conference on Software Engineering, ICSE’95, pp. 243–253. ACM, New York (1995). doi: 10.1145/225014.225037
  7. 7.
    Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional Requirements in Software Engineering. The Kluwer International Series in Software Engineering. Kluwer Academic Publishers, Dordrecht (1999)zbMATHGoogle Scholar
  8. 8.
    Easterbrook, S.: Handling conflict between domain descriptions with computer-supported negotiation. Knowl. Acquis. 3(3), 255–289 (1991)CrossRefGoogle Scholar
  9. 9.
    Espada, P., Goulo, M., Arajo, J.: A framework to evaluate complexity and completeness of KAOS goal models. In: Salinesi, C., Norrie, M., Pastor, s (eds.) Advanced Information Systems Engineering, Lecture Notes in Computer Science, vol. 7908, pp. 562–577. Springer, Berlin (2013). doi: 10.1007/978-3-642-38709-8_36
  10. 10.
    Fisher, R.: Statistical Methods for Research Workers. Cosmo Study Guides. Cosmo Publications, New Delhi (1925)Google Scholar
  11. 11.
    Franch, X.: A method for the definition of metrics over i* models. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) Advanced Information Systems Engineering, Lecture Notes in Computer Science, vol. 5565, pp. 201–215. Springer, Berlin (2009). doi: 10.1007/978-3-642-02144-2_19
  12. 12.
    Giorgini, P., Mylopoulos, J., Sebastiani, R.: Goal-oriented requirements analysis and reasoning in the tropos methodology. Eng. Appl. Artif. Intell. 18, 159–171 (2005). doi: 10.1016/j.engappai.2004.11.017 CrossRefGoogle Scholar
  13. 13.
    Gosset, W.S.: The probable error of a mean. Biometrika 6(1), 1–25 (1908). Originally published under the pseudonym “Student”MathSciNetCrossRefGoogle Scholar
  14. 14.
    Grimmer, J., Stewart, B.M.: Text as data: the promise and pitfalls of automatic content analysis methods for political texts. Polit. Anal. 21, 267–297 (2013)CrossRefGoogle Scholar
  15. 15.
    Hassine, J., Amyot, D.: GRL model validation: a statistical approach. In: Haugen, Ø., Reed, R., Gotzhein, R. (eds.) System Analysis and Modeling: Theory and Practice, Lecture Notes in Computer Science, vol. 7744, pp. 212–228. Springer, Berlin (2013). doi: 10.1007/978-3-642-36757-1_13
  16. 16.
    Hassine, J., Amyot, D.: A questionnaire-based survey methodology for systematically validating goal-oriented models. Requir. Eng. (2015). doi: 10.1007/s00766-015-0221-7
  17. 17.
    Horkoff, J., Yu, E.: Comparison and evaluation of goal-oriented satisfaction analysis techniques. Requir. Eng. 18(3), 199–222 (2013). doi: 10.1007/s00766-011-0143-y CrossRefGoogle Scholar
  18. 18.
    Horkoff, J., Yu, E., Liu, L.: Analyzing trust in technology strategies. In: Proceedings of the 2006 International Conference on Privacy, Security and Trust: Bridge the Gap Between PST Technologies and Business Services, PST’06, pp. 9:1–9:12. ACM, New York (2006). doi: 10.1145/1501434.1501446
  19. 19.
    Horkoff, J., Yu, E.S.K.: Qualitative, interactive, backward analysis of i* models. In: de Castro, J.B., Franch, X., Perini, A., Yu, E.S.K. (eds.) Proceedings of the 3rd International i* Workshop (iStar), Recife, Brazil, CEUR Workshop Proceedings, vol. 322, pp. 43–46. (2008)Google Scholar
  20. 20.
    Iarossi, G.: The power of survey design: a user’s guide for managing surveys, interpreting results, and influencing respondents. Stand Alone Series. World Bank (2006).
  21. 21.
  22. 22.
    ITU-T: Recommendation Z.151. (10/12), User Requirements Notation (URN) language definition, Geneva, Switzerland (2012).
  23. 23.
    Jackson, S.: Research methods: a modular approach. wadsworth/cengage learning (2010).
  24. 24.
    Jamieson, S.: Likert scales: how to (ab)use them. Med. Educ. 38(12), 1217–1218 (2004). doi: 10.1111/j.1365-2929.2004.02012.x CrossRefGoogle Scholar
  25. 25.
    Jackson, K.M., Trochim, W.M.K.: Concept mapping as an alternative approach for the analysis of open-ended survey responses. Organ. Res. Methods 5, 307–332 (2002)CrossRefGoogle Scholar
  26. 26.
    jUCMNav v6.0.0: jUCMNav Project (tool, documentation, and meta-model) (2014).
  27. 27.
    Jureta, I., Faulkner, S., Schobbens, P.Y.: Clear justification of modeling decisions for goal-oriented requirements engineering. Requir. Eng. 13(2), 87–115 (2008). doi: 10.1007/s00766-007-0056-y CrossRefGoogle Scholar
  28. 28.
    Jureta, I., Mylopoulos, J., Faulkner, S.: Analysis of multi-party agreement in requirements validation. In: 17th IEEE International Requirements Engineering Conference (RE), pp. 57–66. IEEE Computer Society, Washington (2009). doi: 10.1109/RE.2009.8
  29. 29.
    Kassab, M.: An integrated approach of AHP and NFRs framework. In: Wieringa, R., Nurcan, S., Rolland, C., Cavarero J.L. (eds.) RCIS, pp. 1–8. IEEE (2013)Google Scholar
  30. 30.
    Knapp, T.R.: Treating ordinal scales as interval scales: an attempt to resolve the controversy. Nurs. Res. 39(2), 121–123 (1990)CrossRefGoogle Scholar
  31. 31.
    Labovitz, S.: Some observations on measurement and statistics. Soc. Forces 46(2), 151–160 (1967). doi: 10.2307/2574595 CrossRefGoogle Scholar
  32. 32.
    Levene, H.: Robust tests for equality of variances. In: Olkin, I. (ed.) Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, pp. 278–292. Stanford University Press, Palo Alto (1960)Google Scholar
  33. 33.
    Liaskos, S., Jalman, R., Aranda, J.: On eliciting contribution measures in goal models. In: 20th IEEE International Requirements Engineering Conference (RE), pp. 221–230. IEEE CS (2012). doi:  10.1109/RE.2012.6345808
  34. 34.
    Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 140(140), 1–55 (1932).
  35. 35.
    Mirbel, I., Villata, S.: Enhancing goal-based requirements consistency: an argumentation-based approach. In: Fisher, M., van der Torre, L., Dastani, M., Governatori, G. (eds.) Computational Logic in Multi-agent Systems, Lecture Notes in Computer Science, vol. 7486, pp. 110–127. Springer, Berlin (2012). doi: 10.1007/978-3-642-32897-8_9
  36. 36.
    Norman, G.: Likert scales, levels of measurement and the “laws” of statistics. Adv. Health Sci. Educ. 15(5), 625–632 (2010). doi: 10.1007/s10459-010-9222-y CrossRefGoogle Scholar
  37. 37.
    Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: Proceedings of the Conference on The Future of Software Engineering, ICSE’00, pp. 35–46. ACM, New York (2000). doi: 10.1145/336512.336523
  38. 38.
    Robinson, W.N.: Integrating multiple specifications using domain goals. In: Proceedings of the 5th International Workshop on Software Specification and Design, IWSSD’89, pp. 219–226. ACM, New York (1989). doi: 10.1145/75199.75232
  39. 39.
    Robinson, W.N.: Negotiation behavior during requirements specification. In: Proceedings of the 12th International Conference on Software Engineering, ICSE’90, pp. 268–276. IEEE Computer Society Press, Los Alamitos (1990).
  40. 40.
    Ryan, G.W., Bernard, H.R.: Data management and analysis methods. In: Denzin, N.K., Lincoln Y.S. (eds.) The Handbook of Qualitative Research, 2nd edn., pp. 769–802. Sage, London, Thousand Oaks, New Dehli (2000)Google Scholar
  41. 41.
    Saaty, T.L.: How to make a decision: the analytic hierarchy process. Eur. J. Oper. Res. 48(1), 9–26 (1990). doi: 10.1016/0377-2217(90)90057-I. Decision making by the analytic hierarchy process: Theory and applicationsMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Schuman, H., Presser, S.: Questions and Answers in Attitude Surveys: Experiments on Question Form, Wording, and Context. Academic, New York (1981)Google Scholar
  43. 43.
    Seidel, J., Kelle, U.: Different functions of coding in the analysis of textual data. In: Kelle, U. (ed.) Computer-Aided Qualitative Data Analysis: Theory, Methods and Practice, pp. 52–61. Sage, London, Thousand Oaks, New Dehli (1995)Google Scholar
  44. 44.
    Tabachnick, B.G., Fidell, L.S.: Using Multivariate Statistics, 5th edn. Allyn & Bacon, Needham Heights (2006)Google Scholar
  45. 45.
    van Lamsweerde, A.: Requirements engineering: from craft to discipline. In: Harrold, M.J., Murphy, G.C. (eds.) Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE 2008), ACM, Atlanta, Georgia, USA, pp. 238–249 (2008)Google Scholar
  46. 46.
    van Lamsweerde, A., Letier, E., Darimont, R.: Managing conflicts in goal-driven requirements engineering. IEEE Trans. Softw. Eng. 24(11), 908–926 (1998). doi: 10.1109/32.730542 CrossRefGoogle Scholar
  47. 47.
    Vinay, S., Aithal, S., Sudhakara, G.: A quantitative approach using goal-oriented requirements engineering methodology and analytic hierarchy process in selecting the best alternative. In: Kumar, A.M., S, R., Kumar, T.V.S. (eds.) Proceedings of International Conference on Advances in Computing, Advances in Intelligent Systems and Computing, vol. 174, pp. 441–454. Springer, India (2012). doi: 10.1007/978-81-322-0740-5_54
  48. 48.
    Wright, H.K., Kim, M., Perry, D.E.: Validity concerns in software engineering research. In: Roman, G.C., Sullivan, K.J. (eds.) FoSER, pp. 411–414. ACM, New York (2010)CrossRefGoogle Scholar
  49. 49.
    Yu, E.S.K.: Towards modeling and reasoning support for early-phase requirements engineering. In: Proceedings of the 3rd IEEE International Symposium on Requirements Engineering, RE’97, pp. 226–235. IEEE Computer Society, Washington, DC (1997)

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceKFUPMDhahranSaudi Arabia
  2. 2.School of Electrical Engineering and Computer ScienceUniversity of OttawaOttawaCanada

Personalised recommendations