Software & Systems Modeling

, Volume 14, Issue 2, pp 719–725 | Cite as

Recent and simple algorithms for Petri nets

  • Alain Finkel
  • Jérôme Leroux
Special Section Paper


We show how inductive invariants can be used to solve coverability, boundedness and reachability problems for Petri nets. This approach provides algorithms that are conceptually simpler than previously published ones.


Petri nets Verification of reachability properties  Simple algorithms 



We thank Pierre McKenzie and Wolfgang Reisig for their careful reading of the paper.


  1. 1.
    Bouziane, Z.: A primitive recursive algorithm for the general petri net reachability problem. In: FOCS 1998, pp. 130–136 (1998)Google Scholar
  2. 2.
    Bozzelli, L., Ganty, P.: Complexity analysis of the backward coverability algorithm for vass. In: Delzanno, G., Potapov, I. (eds.) Reachability Problems—5th International Workshop, RP 2011, Genoa, Italy, September 28–30, 2011. Proceedings. Volume 6945 of Lecture Notes in Computer Science, pp. 96–109. Springer (2011)Google Scholar
  3. 3.
    Cardoza, E., Lipton, R.J., Meyer, A.R.: Exponential space complete problems for Petri nets and commutative semigroups: preliminary report. In: STOC’76, pp. 50–54. ACM (1976)Google Scholar
  4. 4.
    Demri, S.: On selective unboundedness of vass. In: Chen, Y.F., Rezine, A. (eds.) Proceedings 12th International Workshop on Verification of Infinite-State Systems. Volume 39 of EPTCS, pp. 1–15 (2010)Google Scholar
  5. 5.
    Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and primitive-recursive bounds with Dickson’s lemma. In: Logic in Computer Science (LICS), 2011 26th Annual IEEE Symposium on, pp. 269–278 (2011)Google Scholar
  6. 6.
    Finkel, A., Schnoebelen, Ph: Well-structured transition systems everywhere!. Theoret. Comput. Sci. 256(1–2), 63–92 (2001)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Finkel, A.: The minimal coverability graph for petri nets. In: Rozenberg, G. (ed.) Advances in Petri Nets 1993. Volume 674 of Lect. Notes Comp. Sci. pp. 210–243. Springer (1993)Google Scholar
  8. 8.
    Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part I: completions. In: Albers, S., Marion, J.Y. (eds.) 26th Symposium on Theoretical Aspects of Computer Science, STACS’09, pp. 433–444. Springer (2009)Google Scholar
  9. 9.
    Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part II: complete WSTS. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.E., Thomas, W. (eds.) 36th International Colloquium on Automata, Languages and Programming, ICALP’09. Volume 5556 of Lecture Notes Computer Science, pp. 188–199. Springer (2009)Google Scholar
  10. 10.
    Hopcroft, J.E., Pansiot, J.J.: On the reachability problem for 5-dimensional vector addition systems. Theor. Comput. Sci. 8, 135–159 (1979)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Jančar, P.: Bouziane’s transformation of the petri net reachability problem and incorrectness of the related algorithm. Inf. Comput. 206, 1259–1263 (2008)CrossRefMATHGoogle Scholar
  12. 12.
    Leroux, J.: Vector addition systems reachability problem (a simpler solution). In: Voronkov, A. (ed.) The Alan Turing Centenary Conference, Turing-100, Manchester UK June 22–25, 2012, Proceedings. Volume 10 of EPiC Series, EasyChair, pp. 214–228 (2012)Google Scholar
  13. 13.
    Mayr, E.W., Meyer, A.R.: The complexity of the finite containment problem for petri nets. J. ACM 28(3), 561–576 (1981)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Pachl, J.K.: Reachability problems for communicating finite state machines. CoRR cs.LO/0306121 (2003)Google Scholar
  15. 15.
    Rackoff, Ch.: The covering and boundedness problems for vector addition systems. Theoret. Comput. Sci. 6(2), 223–231 (1978)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.LSV, ENS Cachan, CNRSINRIAParisFrance
  2. 2.LaBRI, CNRSUniversité de BordeauxBordeauxFrance

Personalised recommendations