Software & Systems Modeling

, Volume 15, Issue 2, pp 531–552 | Cite as

A framework for the operationalization of monitoring in business intelligence requirements engineering

  • Corentin Burnay
  • Ivan J. Jureta
  • Isabelle Linden
  • Stéphane Faulkner
Regular Paper


Business intelligence (BI) is perceived as a critical activity for organizations and is increasingly discussed in requirements engineering (RE). RE can contribute to the successful implementation of BI systems by assisting the identification and analysis of such systems’ requirements and the production of the specification of the system to be. Within RE for BI systems, we focus in this paper on the following questions: (i) how the expectations of a BI system’s stakeholders can be translated into accurate BI requirements, and (ii) how do we operationalize specifically these requirements in a system specification? In response, we define elicitation axes for the documentation of BI-specific requirements, give a list of six BI entities that we argue should be accounted for to operationalize business monitoring, and provide notations for the modeling of these entities. We survey important contributions of BI to define elicitation axes, adapt existing BI notations issued from RE literature, and complement them with new BI-specific notations. Using the i* framework, we illustrate the application of our proposal using a real-world case study.


Business intelligence Requirement  Monitoring Indicator Analytic Field Schema Source 



The authors thank the reviewers for their many helpful suggestions for extending and improving this paper. They also wish to thank Audrey Clarenne and Jean Burnay for their support during this project and for the many revisions they suggested on the models presented in this paper.


  1. 1.
    Luhn, H.P.: A business intelligence system. IBM J Res Dev 2(4), 314–319 (1958)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Golfarelli, M., Rizzi, S., Cella, I.: Beyond Data Warehousing: What’s Next in Business Intelligence? In: Proceedings of the 7th ACM International Workshop on Data Warehousing and OLAP. DOLAP ’04, pp. 1–6. ACM, New York (2004). doi: 10.1145/1031763.1031765
  3. 3.
    Negash, S.: Business Intelligence. Commun. Assoc. Inf. Syst. 13, 177–195 (2004)Google Scholar
  4. 4.
    Britos, P., Dieste, O., García-Martínez, R.: Requirements elicitation in data mining for business intelligence projects. In: Avison, D., Kasper, G.M., Pernici, B., Ramos, I., Roode, D. (eds.) Advances in Information Systems Research, Education and Practice. IFIP - The International Federation for Information Processing, vol. 274, pp. 139–150. Springer (2008). doi: 10.1007/978-0-387-09682-7-9_12
  5. 5.
    Popova, V., Sharpanskykh, A.: Modeling organizational performance indicators. Inf. Syst. 35(4), 505–527 (2010)CrossRefGoogle Scholar
  6. 6.
    Horkoff, J., Barone, D., Jiang, L., Yu, E., Amyot, D., Borgida, A., Mylopoulos, J.: Strategic business modeling: representation and reasoning. Softw. Syst. Model. (2012). doi: 10.1007/s10270-012-0290-8
  7. 7.
    Fernandes, K.J., Raja, V., Whalley, A.: Lessons from implementing the balanced scorecard in a small and medium size manufacturing organization. Technovation 26, 623–634 (2006)CrossRefGoogle Scholar
  8. 8.
    Gangadharan, G., Swami, S.N.: Business intelligence systems: design and implementation strategies. In: Proccedings of the 26th International Conference on Information Technology, Interfaces. 139–144 (2004)Google Scholar
  9. 9.
    Panian, Z.: Return on investment for business intelligence. In: Proccedings of International Conference on Mathematics and Computers in Business and Economics. 205–210 (2007)Google Scholar
  10. 10.
    Isik, O., Jones, M.C., Sidorova, A.: Business intelligence (bi) success and the role of bi capabilities. Intel. Syst. Account. Finance Manag. 18(4), 161–176 (2011)CrossRefGoogle Scholar
  11. 11.
    Kimball, R.: The Data Warehouse Toolkit. Wiley, Colorado (1996)Google Scholar
  12. 12.
    Inmon, W.H.: Building the Data Warehouse. QED Press/Wiley, New York (1992)Google Scholar
  13. 13.
    Silva Souza, V.E., Mazn, J.N., Garrigos, I., Trujillo, J., Mylopoulos, J.: Monitoring strategic goals in data warehouses with awareness requirements. In: Proceedings of 27th Annual ACM Symposium on Applied, Computing, pp. 1075–1082 (2012)Google Scholar
  14. 14.
    Moody, D.L., Kortink, M.A.: From enterprise models to dimensional models: a methodology for data warehouse and data mart design. In: Proccedings of the International Workshop on Design and Management of Data Warehouses (2000)Google Scholar
  15. 15.
    Paim, F.R.S., de Castro, J.F.B.: Dwarf: An approach for requirements definition and management of data warehouse systems. In: Requirements Engineering Conference, 2003. Proceedings. 11th IEEE International, IEEE pp. 75–84 (2003)Google Scholar
  16. 16.
    Ackoff, R.L.: From data to wisdom. J. Appl. Syst. Anal. 16, 3–9 (1989)Google Scholar
  17. 17.
    Zeleny, M., von Hayek, F.A.: Management support systems: towards integrated knowledge management. Hum. Syst. Manag. 7(1), 59–70 (1987)Google Scholar
  18. 18.
    Rowley, J.: The wisdom hierarchy: representations of the dikw hierarchy. J. Inf. Sci. 33, 163–180 (2007)CrossRefGoogle Scholar
  19. 19.
    Kaplan, R.S., Norton, D.P.: The balanced scorecard—measures that drive performance. Harv. Bus. Rev. 70(1), 71–79 (1992)Google Scholar
  20. 20.
    Kaplan, R.S., Norton, D.P.: Linking the balanced scorecard to strategy. Calif. Manag. Rev. 39(1), 53–80 (1996)CrossRefGoogle Scholar
  21. 21.
    Neely, A., Adams, C., Crowe, P.: The performance prism in practice. Meas. Bus. Excell. 5(2), 6–13 (2001)CrossRefGoogle Scholar
  22. 22.
    Franceschini, F., Galetto, M., Maisano, D.: Management by Measurement. Springer, Berlin (2007)Google Scholar
  23. 23.
    Parmenter, D.: Key Performance Indicators (KPI): Developing, Implementing, and Using Winning KPIs. Wiley, Colorado (2010)Google Scholar
  24. 24.
    Kronz, A.: Managing of process key performance indicators as part of the ARIS methodology. In: Corporate Performance Management, pp. 31–44. Springer, Berlin (2006). doi: 10.1007/3-540-30787-7_3
  25. 25.
    Stefanov, V., List, B., Korherr, B.: Extending UML 2 activity diagrams with business intelligence objects. In: Tjoa, A.M., Trujillo, J. (eds.) Data Warehousing and Knowledge Discovery. Lecture Notes in Computer Science, vol. 3589, pp. 53–63. Springer, Berlin (2005). doi: 10.1007/11546849_6
  26. 26.
    Pourshahid, A., Richards, G., Amyot, D.: Toward a goal-oriented, business intelligence decision-making framework. In: Babin, G., Stanoevska-Slabeva, K., Kropf, P. (eds) MCETECH. Lecture Notes in Business Information Processing, vol. 78, pp. 100–115. Springer (2011)Google Scholar
  27. 27.
    Pourshahid, A., Amyot, D., Peyton, L., Ghanavati, S., Chen, P., Weiss, M., Forster, A.J.: Business process management with the user requirements notation. Electron. Commer. Res. 9(4), 269–316 (2009)CrossRefGoogle Scholar
  28. 28.
    Pourshahid, A., Mussbacher, G., Amyot, D., Weiss, M.: Requirements for a modeling language to specify and match business process improvement patterns. In: Model-Driven Requirements Engineering (MoDRE), 2013 International Workshop on IEEE, pp. 10–19 (2013)Google Scholar
  29. 29.
    Goguen, J.A., Linde, C.: Techniques for requirements elicitation. In: Proceedings of IEEE International Symposium on Requirements Engineering, pp. 152–164 (1993)Google Scholar
  30. 30.
    Zowghi, D., Coulin, C.: Requirements elicitation: a survey of techniques, approaches, and tools. In: Aurum, A., Wohlin, C. (eds.) Engineering and Managing Software Requirements, pp. 19–46. Springer, Berlin (2005). doi: 10.1007/3-540-28244-0_2
  31. 31.
    Ranjan, J.: Business intelligence: concepts, components, techniques and benefits. J. Theor. Appl. Inf. Technol. 9, 60–70 (2009)Google Scholar
  32. 32.
    Moss, L.T., Atre, S.: Business intelligence roadmap: the complete project lifecycle for decision-support applications. Addison-Wesley Professional, Boston (2003)Google Scholar
  33. 33.
    Olszak, C.M., Ziemba, E.: Approach to building and implementing business intelligence systems. Interdiscip. J. Inf. Knowl. Manag. 2, 134–148 (2007)Google Scholar
  34. 34.
    Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: a conceptual model for data warehouses. Int. J. Coop. Inf. Syst. 7(02n03), 215–247 (1998)CrossRefGoogle Scholar
  35. 35.
    Giorgini, P., Rizzi, S., Garzetti, M.: Grand: a goal-oriented approach to requirement analysis in data warehouses. Decis. Support Syst. 45(1), 4–21 (2008)CrossRefGoogle Scholar
  36. 36.
    Van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In: Proceedings of the 5th IEEE International Symposium on Requirements Engineering, IEEE Computer Society, pp. 249–262 (2001)Google Scholar
  37. 37.
    Barone, D., Jiang, L., Amyot, D., Mylopoulos, J.: Composite indicators for business intelligence. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) Conceptual Modeling - ER 2011. Lecture Notes in Computer Science, vol. 6998, pp. 448–458. Springer, Berlin (2011). doi: 10.1007/978-3-642-24606-7_35
  38. 38.
    ITU-T: Recommendation Z.151 (10/12), User Requirements Notation (URN)—Language Definition, Geneva, Switzerland, approved October 2012. Co-editors: Amyot, D., Mussbacher, G. (October 2012)Google Scholar
  39. 39.
    Palpanas, T., Chowdhary, P., Mihaila, G., Pinel, F.: Integrated model-driven dashboard development. Inf. Syst. Front. 9(2–3), 195–208 (2007)CrossRefGoogle Scholar
  40. 40.
    Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with goal models. In: Proceedings of the 21st International Conference on Conceptual Modeling. ER ’02 pp. 167–181. Springer-Verlag, London (2002).
  41. 41.
    Horkoff, J., Borgida, A., Mylopoulos, J., Barone, D., Jiang, L., Yu, E., Amyot, D.: Making data meaningful: the business intelligence model and its formal semantics in description logics. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) On the Move to Meaningful Internet Systems: OTM 2012, pp. 700–717. Springer (2012)Google Scholar
  42. 42.
    Liu, L., Yu, E.: Designing information systems in social context: a goal and scenario modelling approach. Inf. Syst. 29(2), 187–203 (2004)CrossRefGoogle Scholar
  43. 43.
    Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems engineering: the tropos project. Inf. Syst. 27, 365–389 (2002)CrossRefzbMATHGoogle Scholar
  44. 44.
    Dardenne, A., Van Lamsweerde, A., Fickas, S.: Goal-directed req- uirements acquisition. Sci. comput. program. 20(1), 3–50 (1993)Google Scholar
  45. 45.
    Vassiliadis, P.: A survey of extract–transform–load technology. Int. J. Data Warehous. Min. 5(3), 1–27 (2009). doi: 10.4018/jdwm.2009070101
  46. 46.
    Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Conceptual modeling for etl processes. In: Proceedings of the 5th ACM international workshop on Data Warehousing and OLAP, ACM, pp. 14–21 (2002)Google Scholar
  47. 47.
    Arens, Y., Chee, C.Y., Hsu, C.N., Knoblock, C.A.: Retrieving and integrating data from multiple information sources. Int. J. Intel. Coop. Inf. Syst. 2(02), 127–158 (1993)CrossRefGoogle Scholar
  48. 48.
    Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int. J. Ad Hoc Ubiquitous Comput. 2(4), 263–277 (2007)CrossRefGoogle Scholar
  49. 49.
    Indulska, J., Sutton, P.: Location management in pervasive systems. In: Proceedings of the Australasian information security workshop, vol. 21, pp. 143–151. Australian Computer Society, Inc. (2003)Google Scholar
  50. 50.
    Schmidt, A., Van Laerhoven, K.: How to build smart appliances. Pers. Commun. IEEE 8(4), 66–71 (2001)CrossRefGoogle Scholar
  51. 51.
    Romero, O., Abelló, A.: A survey of multidimensional modeling methodologies. Int. J. Data Wareh. Min. (IJDWM) 5(2), 1–23 (2009)CrossRefGoogle Scholar
  52. 52.
    Rizzi, S., Abelló, A., Lechtenbörger, J., Trujillo, J.: Research in data warehouse modeling and design: dead or alive? In: Proceedings of the 9th ACM international workshop on Data warehousing and OLAP, ACM, pp. 3–10 (2006)Google Scholar
  53. 53.
    Winter, R., Strauch, B.: Information requirements engineering for data warehouse systems. In: Proceedings of 2004 ACM symposium on applied computing, ACM, pp. 1359–1365 (2004)Google Scholar
  54. 54.
    Golfarelli, M., Rizzi, S.: A methodological framework for data warehouse design. In: Proceedings of the 1st ACM international workshop on Data warehousing and OLAP, ACM, pp. 3–9 (1998)Google Scholar
  55. 55.
    Davies, J., Finlay, M., McLenaghen, T., Wilson, D.: Key risk indicators—their role in operational risk management and measurement. In: Ellen, D. (ed.) The Advanced Measurement Approach to Operational Risk. Risk Books, London (2006)Google Scholar
  56. 56.
    Tawhid, R., Braun, E., Cartwright, N., Alhaj, M., Mussbacher, G., Shamsaei, A., Amyot, D., Behnam, S.A., Richards, G.: Towards outcome-based regulatory compliance in aviation security. In: Requirements Engineering Conference (RE), 2012 20th IEEE International, IEEE, pp. 267–272 (2012)Google Scholar
  57. 57.
    Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.-C.: Business process intelligence. Comput. Ind. 53(3), 321–343 (2004). doi: 10.1016/j.compind.2003.10.007
  58. 58.
    Rodriguez, C., Daniel, F., Casati, F., Cappiello, C.: Toward uncertain business intelligence: the case of key indicators. Internet Comput. 14(4), 32–40 (2010)CrossRefGoogle Scholar
  59. 59.
    Scandizzo, S.: Risk mapping and key risk indicators operational risk management. Econ. Notes 34(2), 231–256 (2005)CrossRefGoogle Scholar
  60. 60.
    del Río-Ortega, A., Resinas, M., Cabanillas, C., Ruiz-CortéS, A.: On the definition and design-time analysis of process performance indicators. Inf. Syst. 38(4), 470–490 (2013)CrossRefGoogle Scholar
  61. 61.
    Porter, M.E.: Competitive advantage: creating and sustaining superior performance. Free Press, Washington (1985)Google Scholar
  62. 62.
    Pauwels, K., Ambler, T., Clark, B.H., LaPointe, P., Reibstein, D., Skiera, B., Wierenga, B., Wiesel, T.: Dashboards as a service why, what, how, and what research is needed? J. Serv. Res. 12(2), 175–189 (2009)CrossRefGoogle Scholar
  63. 63.
    Yigitbasioglu, O.M., Velcu, O.: A review of dashboards in performance management: implications for design and research. Int. J. Account. Inf. Syst. 13, 41–59 (2012)CrossRefGoogle Scholar
  64. 64.
    Eckerson, W.W.: Performance Dashboards: Measuring, Monitoring, and Managing Your Business. Wiley, Colorado (2010)Google Scholar
  65. 65.
    Rasmussen, N.H., Bansal, M., Chen, C.Y.: Business Dashboards: A Visual Catalog for Design and Deployment. Wiley, Colorado (2009)Google Scholar
  66. 66.
    Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing environments. Knowl. Eng. Rev. 18(3), 197–207 (2004)CrossRefGoogle Scholar
  67. 67.
    Winograd, T.: Architectures for context. Hum. Comput. Interact. 16(2), 401–419 (2001)CrossRefGoogle Scholar
  68. 68.
    Chen, G., Kotz, D., et al.: A survey of context-aware mobile computing research. Technical report, Technical Report TR2000-381, Dept. of Computer Science, Dartmouth College (2000)Google Scholar
  69. 69.
    Mazón, J.N., Pardillo, J., Trujillo, J.: A model-driven goal-oriented requirement engineering approach for data warehouses. In: Hainaut, J.-L., Rundensteiner E.A., Kirchberg, M. Bertolotto, M., Brochhausen, M., Chen, Y.-P.P., Cherfi, S.S.-S., Doerr, M., Han, H., Hartmann, S., Parsons, J., Poels, G., Rolland, C., Trujillo, J., Yu, E., Zimányie, E. (eds.) Advances in Conceptual Modeling-Foundations and Applications. Lecture Notes in Computer Science, vol. 4802, pp. 255–264. Springer, Berlin (2007). doi: 10.1007/978-3-540-76292-8_31
  70. 70.
    Barone, D., Jiang, L., Amyot, D., Mylopoulos, J.: Reasoning with key performance indicators. In: Johannesson, P., Krogstie, J., Opdahl, A.L. (eds.) The Practice of Enterprise Modeling. Lecture Notes in Business Information Processing, vol. 92, pp. 82–96. Springer , Berlin (2011). doi: 10.1007/978-3-642-24849-8_7
  71. 71.
    Roest, P.: The golden rules for implementing the balanced business scorecard. Inf. Manag. Comput. Secur. 5(5), 163–165 (1997)Google Scholar
  72. 72.
    Jureta, I.J., Faulkner, S., Schobbens, P.-Y.: A more expressive softgoal conceptualization for quality requirements analysis. In: Embley, D.W., Olivé, A., Ram, S. (eds.) Conceptual Modeling - ER 2006. Lecture Notes in Computer Science, vol. 4215, pp. 281–295. Springer, Berlin (2006). doi: 10.1007/11901181_22

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Corentin Burnay
    • 1
    • 2
  • Ivan J. Jureta
    • 1
    • 2
  • Isabelle Linden
    • 3
  • Stéphane Faulkner
    • 4
  1. 1.Department of Business Administration, PReCISE Research CenterUniversity of NamurNamurBelgium
  2. 2.Fonds de la Recherche Scientifique (FNRS)NamurBelgium
  3. 3.Business Administration Department, Focus Research GroupUniversity of NamurNamurBelgium
  4. 4.Business Administration Department PReCISE Research CenterUniversity of NamurNamurBelgium

Personalised recommendations