Software & Systems Modeling

, Volume 14, Issue 2, pp 765–793 | Cite as

Deontic BPMN: a powerful extension of BPMN with a trusted model transformation

  • Christine Natschläger
  • Felix Kossak
  • Klaus-Dieter Schewe
Regular Paper


The Business Process Model and Notation (BPMN) is a widely-used standard for process modelling. A drawback of BPMN, however, is that modality is implicitly expressed through the structure of the process flow but not directly within the corresponding activity. Thus, an extension of BPMN with deontic logic has been proposed in previous work, called Deontic BPMN. Deontic BPMN reduces the structural complexity of the process flow and increases the readability by explicitly highlighting obligatory and permissible activities. In addition, an algebraic graph transformation from a subset of BPMN to Deontic BPMN, called Deontic BpmnGTS, has been defined. The goal of the current research is to show that DeonticBpmnGTS is terminating and confluent, resulting in a globally deterministic transformation. Moreover, the semantic equivalence of BPMN models and the respective Deontic BPMN models is proven based on Abstract State Machines (ASMs). Thus, DeonticBpmnGTS can be called a trusted model transformation.


Business process modelling BPMN Deontic logic Graph transformation Deterministic transformation Semantic analysis 



The project Vertical Model Integration is supported within the program “Regionale Wettbewerbsfähigkeit OÖ 2007–2013” by the European Fund for Regional Development as well as the State of Upper Austria.


  1. 1.
    van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow patterns. Distrib. Parallel Database 14, 5–51 (2003)CrossRefGoogle Scholar
  2. 2.
    AGG The AGG 1.5.0 Development Environment–The User Manual., (2006). Accessed March 2013
  3. 3.
    AGG.: AGG Homepage. (2011). Accessed March 2012
  4. 4.
    Asirelli, P., ter Beek, M.H., Gnesi, S., Fantechi, A.: Deontic logics for modeling behavioural variability. In: Benavides, D., Metzger, A., Eisenecker, U.W. (eds.) VaMoS’09, Universität Duisburg-Essen, 29, pp. 71–76. ICB Research, Report (2009)Google Scholar
  5. 5.
    Asirelli, P., ter Beek, M.H., Gnesi, S., Fantechi, A.: A deontic logical framework for modelling product families. In: Benavides, D., Batory, D.S., Grünbacher, P. (eds.) 4th International Workshop on Variability Modelling of Software-intensive Systems (VaMoS’10), Universität Duisburg-Essen, ICB-Research. Report 37, 37–44 (2010)Google Scholar
  6. 6.
    Börger, E., Sörensen, O.: BPMN core modeling concepts: Inheritance-based execution semantics. In: Embley, D., Thalheim, B. (eds.) Handbook of Conceptual Modeling: Theory, Practice and Research Challenges. Springer, Heidelberg (2011)Google Scholar
  7. 7.
    Börger, E., Stärk, R.: Abstract State Machines–A Method for High-Level System Design and Analysis. Springer Verlag, New York (2003)Google Scholar
  8. 8.
    Börger, E., Thalheim, B.: A method for verifiable and validatable business process modeling. Adv. Softw. Eng. LNCS 5316, 59–115 (2008)CrossRefGoogle Scholar
  9. 9.
    Broersen, J., Van der Torre, L.: Ten problems of deontic logic and normative reasoning in computer science. European Summer School of Logic, Language and Information (ESSLLI), Germany (2010)Google Scholar
  10. 10.
    Broy, M.: Informatik-Eine grundlegende Einführung, vol 2-Systemstrukturen und Theoretische Informatik, 2nd edn. Springer Verlag, New York (1998)Google Scholar
  11. 11.
    Dijkman, R., Dumas, M., Ouyang, C.: Formal semantics and automated analysis of BPMN process models. Queensland University of Technology, Faculty of Science and Technology, Tech. rep., Brisbane (2007)Google Scholar
  12. 12.
    Eclipse: BPMN Modeler. (2011). Accessed August 2011
  13. 13.
    Ehrig, H, Pfender, M, Schneider, H.J.: Graph-grammars: an algebraic approach. In: Proceedings of FOCS 1973, IEEE, pp 167–180 (1973)Google Scholar
  14. 14.
    Ehrig, H., Habel, A., Kreowski, H.J., Parisi-Presicce, F.: From graph grammars to high level replacement systems. In: Ehrig, H., Kreowski, H.J., Rozenberg, G., (eds.) Graph Grammars and Their Application to Computer Science, Lecture Notes in Computer Science, vol 532. Springer Verlag, New York, pp. 269–291 (1991)Google Scholar
  15. 15.
    Ehrig, H., Habel, A., Kreowski, H.J., Parisi-Presicce, F.: Parallelism and concurrency in high-level replacement systems. Math. Struct. Comput. Sci. 1, 361–404 (1991)Google Scholar
  16. 16.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer, New York (2006)Google Scholar
  17. 17.
    Ghose, A., Koliadis, G.: Auditing business process compliance. In: Service-Oriented Computing (ICSOC), Lecture Notes in Computer Science, vol 4749. Springer, Berlin, pp. 169–180 (2007)Google Scholar
  18. 18.
    Goedertier, S., Vanthienen, J.: Designing compliant business processes with obligations and permissions. In: Eder, J., Dustdar, S., (eds.) Business Process Management Workshops, Lecture Notes in Computer Science, vol 4103, Springer, New York, pp. 5–14 (2006)Google Scholar
  19. 19.
    Goedertier, S., Vanthienen, J.: Declarative process modeling with business vocabulary and business rules. In: Meersman, R., Tari, Z., Herrero, P. (eds.) On the Move to Meaningful Internet Systems 2007: OTM 2007 Workshops, Lecture Notes in Computer Science, vol 4805, Springer, Berlin, pp. 603–612 (2007)Google Scholar
  20. 20.
    Governatori, G., Milosevic, Z.: A formal analysis of a business contract language. Intern. J. Co-op. Inform. Syst. (IJCIS) 15(4), 659–685 (2006)CrossRefGoogle Scholar
  21. 21.
    Gurevich, Y.: Sequential abstract state machines capture sequential algorithms. ACM Trans. Comput. Logic 1(1), 77–111 (2000)Google Scholar
  22. 22.
    Horty, J.: Agency and Deontic Logic. Oxford University Press, New York (2001)CrossRefMATHGoogle Scholar
  23. 23.
    Lewis, D.: Semantic analyses for dyadic deontic logic. In: Stenlund, S. (ed.) Logical Theory and Semantic Analysis: Essays Dedicated to Stig Kanger on His Fiftieth Birthday, Reidel Publishing Co, Boston, pp. 1–14 (1974)Google Scholar
  24. 24.
    Löwe, M.: Extended algebraic graph transformation. PhD thesis, TU Berlin (1990)Google Scholar
  25. 25.
    Löwe, M., Beyer, M.: AGG–an implementation of algebraic graph rewriting. In: Rewriting Techniques and Applications, Springer, Berlin (1993)Google Scholar
  26. 26.
    McCabe, T.J.: McCabe Metrics. (2011). Accessed March 2012
  27. 27.
    Mogos, A.H., Urzica, A.: TN4PM: A textual notation for process modelling. In: Papadopoulos, G., Badica, C. (eds.) Intelligent Distributed Computing III, Studies in Computational Intelligence, vol 237, pp. 263–268. Springer, Berlin (2009)Google Scholar
  28. 28.
    Moody, D.L.: The ”physics” of notations: Towards a scientific basis for constructing visual notations in software engineering. IEEE Trans. Softw. Eng. 35(5), 756–778 (2009)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Natschläger, C.: Deontic BPMN. In: Hameurlain, A., Liddle, S., Schewe, K.D., Zhou, X. (eds.) Database and Expert Systems Applications, Lecture Notes in Computer Science, vol 6861. Springer, Berlin, pp 264–278 (2011)Google Scholar
  30. 30.
    Natschläger, C., Schewe, K.D.: A flattening approach for attributed type graphs with inheritance in algebraic graph transformation. In: Fish, A., Lambers, L. (eds.) Local Proceedings of GT-VMT (2012), Electronic Communications of the EASST, pp 160–173 (2012)Google Scholar
  31. 31.
    Natschläger, C., Geist, V., Kossak, F., Freudenthaler. B.: Optional activities in process flows. In: Rinderle-Ma, S., Weske, M. (eds.) EMISA 2012: Der Mensch im Zentrum der Modellierung, Gesellschaft für Informatik, Bonn, Lecture Notes in Informatics, vol P-206, pp 67–80 (2012)Google Scholar
  32. 32.
    Natschläger-Carpella, C.: Extending BPMN with Deontic Logic. Logos, Berlin (2012)Google Scholar
  33. 33.
    OMG.: Semantics of business vocabulary and business rules (SBVR), v1.0. (2008). Accessed August 2011
  34. 34.
    OMG.: Business process model and notation (BPMN), v2.0. (2011). Accessed August 2011
  35. 35.
    Padmanabhan, V., Governatori, G., Sadiq, S., Colomb, R., Rotolo, A.: Process modelling: The deontic way. In: Proceedings of the 3rd Asia-Pacific Conference on Conceptual Modelling, Australian Computer Society, Inc., Darlinghurst, Australia, vol 53, pp. 75–84 (2006)Google Scholar
  36. 36.
    Raoult, J.C.: On graph rewritings. Theoret. Comput. Sci. 32, 1–24 (1984)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Åqvist, L.: Deontic Logic, pp. 147–264. Kluwer Academic, Dordrecht (2002)Google Scholar
  38. 38.
    Sadiq, S., Governatori, G., Namiri, K.: Modeling control objectives for business process compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) Business Process Management, Lecture Notes in Computer Science, vol 4714, Springer, Berlin, pp. 149–164 (2007)Google Scholar
  39. 39.
    Taentzer, G.: AGG: A tool environment for algebraic graph transformation. In: Applications of Graph Transformations with Industrial Relevance (AGTIVE), Lecture Notes in Computer Science, Springer, Berlin, pp. 481–488 (2000)Google Scholar
  40. 40.
    Taentzer, G.: AGG: A graph transformation environment for modeling and validation of software. In: Pfaltz, J., Nagl, M., Böhlen, B. (eds.) Applications of Graph Transformations with Industrial Relevance (AGTIVE), Lecture Notes in Computer Science, vol 3062, Springer, Berlin, pp. 446–453 (2004)Google Scholar
  41. 41.
    Urzica, A., Tanase, C.: Mapping BPMN to AUML: Towards an automatic process. In: 17th International Conference of Control Systems and Computer Science, MASTS 2009 Workshop, Germany, pp. 539–547 (2009)Google Scholar
  42. 42.
    Varró, D., Varró-Gyapay, S., Ehrig, H., Prange, U., Taentzer, G.: Termination analysis of model transformations by petri nets. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) Graph Transformations, Lecture Notes in Computer Science, vol 4178, Springer, Berlin, pp. 260–274 (2006)Google Scholar
  43. 43.
    Weigand, H., Verharen, E., Dignum, F.: Interoperable transactions in business models–a structured approach. In: Constantopoulos, P., Mylopoulos, J., Vassiliou, Y. (eds.) Advanced Information Systems Engineering, Lecture Notes in Computer Science, vol 1080, Springer, Berlin, pp. 193–209 (1996)Google Scholar
  44. 44.
    Wieringa, R., Meyer, J.J.: Applications of deontic logic in computer science: A concise overview. In: Deontic Logic in Computer Science: Normative System Specification, Wiley, New York, pp. 17–40 (1993)Google Scholar
  45. 45.
    Wong, P., Gibbons, J.: A process semantics for BPMN. In: Liu, S., Maibaum, T., Araki, K. (eds.) Formal Methods and Software Engineering, Lecture Notes in Computer Science, vol 5256, Springer, Berlin, pp. 355–374 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christine Natschläger
    • 1
  • Felix Kossak
    • 1
  • Klaus-Dieter Schewe
    • 1
    • 2
  1. 1.Software Competence Center HagenbergHagenbergAustria
  2. 2.Research Institute for Applied Knowledge ProcessingJohannes-Kepler-University LinzHagenbergAustria

Personalised recommendations