Advertisement

Software & Systems Modeling

, Volume 11, Issue 2, pp 287–302 | Cite as

A graph grammar-based formal validation of object-process diagrams

  • Arieh Bibliowicz
  • Dov Dori
Regular Paper

Abstract

Two basic requirements from a system’s conceptual model are correctness and comprehensibility. Most modeling methodologies satisfy only one of these apparently contradicting requirements, usually comprehensibility, leaving aside problems of correctness and ambiguousness that are associated with expressiveness. Some formal modeling languages do exist, but in these languages a complete model of a complex system is fairly complicated to understand. Object-process methodology (OPM) is a holistic systems modeling methodology that combines the two major aspects of a system—structure and behavior—in one model, providing mechanisms to manage the complexity of the model using refinement-abstraction operations, which divide a complex system into many interconnected diagrams. Although the basic syntax and semantics of an OPM model are defined, they are incomplete and leave room for incorrect or ambiguous models. This work advances the formal definition of OPM by providing a graph grammar for creating and checking OPM diagrams. The grammar provides a validation methodology of the semantic and syntactic correctness of a single object-process diagram.

Keywords

Formal system model Object-process modeling Graph transformation Model verification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peterson J.L.: Petri nets. ACM Comput. Surv. 9, 223–252 (1977)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bibliowicz, A.: A graph grammar-based formal validation of an object-process diagram, M.Sc. Thesis, Technion, Israel. Available at http://www.vainolo.com/files/research/A-Graph-Grammar-Based-Formal-Validation-of-an-Object-Process-Diagram.pdf (2008)
  3. 3.
    Breu, R., Hinkel, U., Hofmann, C., Klein, C., Paech, B., Rumpe, B., Thurner, V.: Towards a formalization of the unified modeling language. In: ECOOP—11th European Conference in Object-Oriented Programming. LNCS, vol. 1241, pp. 344–366. Springer, Berlin (1997)Google Scholar
  4. 4.
    Bruel, J., France, R.B.: Transforming UML models to formal specifications. Available at http://www.cs.york.ac.uk/puml/papers/brueluml98.pdf (1998)
  5. 5.
    Corradini A., Ehrig H., Heckel R., Löwe M., Montanari U., Rossi F.: Algebraic approaches to graph transformation, part I: basic concepts and double pushout approach. In: Rozenberg, G. (eds) Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. 1. World Scientific, Singapore (1997)Google Scholar
  6. 6.
    Dori D.: Object-process methodology: a holistic systems paradigm. Springer, New York (2002)Google Scholar
  7. 7.
    Dori, D., Linchevski, C., Manor, R.: OPCAT—a software environment for object-process methodology based conceptual modeling of complex systems. In: Proceedings 1st International Conference on Modelling and Management of Engineering Processes. University of Cambridge, Cambridge, pp. 147–151 (2010)Google Scholar
  8. 8.
    Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.: Constraints and application conditions: from graphs to high-level structures. In: ICGT 2004–2nd International Conference in Graph Transformations. LNCS, vol. 3256, pp. 287–303. Springer, Berlin (2004)Google Scholar
  9. 9.
    Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.: Algebraic approaches to graph transformation. Part II: single pushout approach and comparison with double pushout approach. In: Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, Vol. I, pp. 247–312. World Scientific, Singapore (1997)Google Scholar
  10. 10.
    Evans, A., France, R.B., Lano, K., Rumpe, B.: The UML as a formal modeling notation. In: UML ‘98: Selected papers from the First International Workshop on The Unified Modeling Language UML. LNCS, vol. 1618, pp. 336–348. Springer, Berlin (1999)Google Scholar
  11. 11.
    France R.B., Ghosh S., Dinh-Trong T., Solberg A.: Model-driven development using UML 2.0: promises and pitfalls. Computer 39(2), 59 (2006)CrossRefGoogle Scholar
  12. 12.
    Gogolla, M., Parisi-Presicce, F.: State diagrams in UML: a formal semantics using graph transformations. In: Broy, M., Coleman, D., Maibaum, Tom S.E., Rumpe, B. (eds.) Proceedings PSMT’98 Workshop on Precise Semantics for Modeling Techniques. Technische Universitat München, TUM-I9803 (1998)Google Scholar
  13. 13.
    Kuske S., Gogolla M., Kreowski H.J., Ziemann P.: Towards an integrated graph-based semantics for UML. Softw. Syst. Model. 8(3), 385–401 (2009)CrossRefGoogle Scholar
  14. 14.
    Habel A., Heckel R., Taentzer G.: Graph grammars with negative application conditions. Fundam. Inf. 26(3–4), 287–313 (1996)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Heckel, R.: Embedding of conditional graph transformations. In: Valiente F.G., Rosello, L.F. (eds) Proceedings Colloquium on Graph Transformation and its Application in Computer Science, Technical Report B-19, Universitat de les Illes Balears (1995)Google Scholar
  16. 16.
    Jürjens, J.: A UML statecharts semantics with message-passing. In: SAC—Proceedings of the 2000 ACM Symposium on Applied Computing, pp. 1009–1013 (2002)Google Scholar
  17. 17.
    Kobryn C.: UML 3.0 and the future of modeling. Softw. Syst. Model. 3(1), 4–8 (2004)CrossRefGoogle Scholar
  18. 18.
    Kong, J., Zhang, K., Dong, J., Song, G.: A graph grammar approach to software architecture verification and transformation. In: COMPSAC ‘03—Proceedings of the 27th Annual International Conference on Computer Software and Applications, p. 492. IEEE Computer Society, Washington (2003)Google Scholar
  19. 19.
    Kuske, S.: A formal semantics of UML state machines based on structured graph transformation. In: Proceedings of the 4th International Conference on The Unified Modeling Language, Modeling Languages, Concepts, and Tools. LNCS, vol. 2185, pp. 241–256. Springer, Berlin (2001)Google Scholar
  20. 20.
    Mwaluseke, G.W., Bowen, J.P.: UML Formalisation Literature Survey, at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.9075 (2001)
  21. 21.
    Nestor, A.O.: Modeling of large and complex applications with UML, at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.3347
  22. 22.
    Object Management Group: Unified Modeling Language (UML) 2.0 Infrastructure Specification, at http://www.uml.org/ (2003)
  23. 23.
    Reinhartz-Berger I., Dori D.: A reflective metamodel of object-process methodology: the system modeling building blocks. In: Green, P., Rosemann, M. (eds) Business Systems Analysis with Ontologies, Idea Group, Alberta (2005)Google Scholar
  24. 24.
    Snook C., Butler M.: UML-B: formal modeling and design aided by UML. ACM Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006)CrossRefGoogle Scholar
  25. 25.
    Soffer P., Golany B., Dori D., Wand Y.: Modelling off-the-shelf information systems requirements: an ontological approach. Requir. Eng. 6(3), 183–199 (2001)zbMATHCrossRefGoogle Scholar
  26. 26.
    Spivey J.M.: The Z notation: A Reference Manual. Prentice-Hall, Inc, Upper Saddle River (1989)zbMATHGoogle Scholar
  27. 27.
    Störrle, H., Hausmann, J.H.: Towards a Formal Semantics of UML 2.0 Activities. In: Software Engineering, pp. 117–128 (2005)Google Scholar
  28. 28.
    Tchertchago, A.: Formal Semantics for a UML Fragment Using UML/OCL Metamodeling, at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.5869 (2002)
  29. 29.
    Thomas D.: MDA: revenge of the modelers or UML Utopia?. IEEE Softw. 21(3), 15–17 (2004)CrossRefGoogle Scholar
  30. 30.
    USA Department of Defense: DoD Architecture Framework Version 2.0, at http://cio-nii.defense.gov/sites/dodaf20/index.html (2009)
  31. 31.
    Vanderperren, Y., Dehaene, W.: UML 2 and SysML: an approach to deal with complexity in SoC/NoC Design. In: DATE, pp. 716–717 (2005)Google Scholar
  32. 32.
    Wand Y., Weber R.: On the ontological expressiveness of information systems analysis and design grammars. J. Inform. Syst. 3(4), 217–237 (1993)CrossRefGoogle Scholar
  33. 33.
    Ziemann P., Hölscher K., Gogolla M.: From UML models to graph transformation systems. Electron. Notes Theor. Comput. Sci. 127(4), 17–33 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Faculty of Industrial Engineering and ManagementTechnion, Israel Institute of TechnologyHaifaIsrael
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations