Software & Systems Modeling

, Volume 12, Issue 2, pp 245–264 | Cite as

Metric propositional neighborhood logics on natural numbers

  • Davide Bresolin
  • Dario Della Monica
  • Valentin Goranko
  • Angelo Montanari
  • Guido Sciavicco
Special Section Paper


Interval logics formalize temporal reasoning on interval structures over linearly (or partially) ordered domains, where time intervals are the primitive ontological entities and truth of formulae is defined relative to time intervals, rather than time points. In this paper, we introduce and study Metric Propositional Neighborhood Logic (MPNL) over natural numbers. MPNL features two modalities referring, respectively, to an interval that is “met by” the current one and to an interval that “meets” the current one, plus an infinite set of length constraints, regarded as atomic propositions, to constrain the length of intervals. We argue that MPNL can be successfully used in different areas of computer science to combine qualitative and quantitative interval temporal reasoning, thus providing a viable alternative to well-established logical frameworks such as Duration Calculus. We show that MPNL is decidable in double exponential time and expressively complete with respect to a well-defined sub-fragment of the two-variable fragment \({{\rm FO}^2[\mathbb{N},=,<,s]}\) of first-order logic for linear orders with successor function, interpreted over natural numbers. Moreover, we show that MPNL can be extended in a natural way to cover full \({{\rm FO}^2[\mathbb{N},=,<,s]}\), but, unexpectedly, the latter (and hence the former) turns out to be undecidable.


Metric temporal logic Interval logic Decidability Complexity Expressiveness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)MATHCrossRefGoogle Scholar
  2. 2.
    Alur R., Henzinger T.A.: A really temporal logic. J. ACM 41, 181–204 (1994)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Augusto, J.C., Nugent, C.D.: The use of temporal reasoning and management of complex events in smart home. In: Proceedings of the 16th European Conference on Artificial Intelligence, pp. 778–782 (2004)Google Scholar
  4. 4.
    Blackburn P., de Rijke M., Venema Y.: Modal Logic. Cambridge University Press, Cambridge (2002)Google Scholar
  5. 5.
    Bolander T., Hansen J., Hansen M.R.: Decidability of a hybrid duration calculus. Electronic Notes in Theoretical Computer Science 174(6), 113–133 (2007)CrossRefGoogle Scholar
  6. 6.
    Börger E., Grädel E., Gurevich Y.: The Classical Decision Problem. Perspectives of Mathematical Logic. Springer, Berlin (1997)MATHCrossRefGoogle Scholar
  7. 7.
    Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Decidable and undecidable fragments of Halpern and Shoham’s interval temporal logic: towards a complete classification. In: Proceedings of the 15th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, vol. 5330, LNCS, pp. 590–604. Springer, Berlin (2008)Google Scholar
  8. 8.
    Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Metric propositional neighborhood logics: expressiveness, decidability, and undecidability. In: Proceedings of the 19th European Conference on Artificial Intelligence, pp. 695–700 (2010)Google Scholar
  9. 9.
    Bresolin, D., Della Monica, D., Montanari, A., Sala, P., Sciavicco, G.: A decidable spatial generalization of Metric Interval Temporal Logic. In: Proceedings of the 17th International Symposium on Temporal Representation and Reasoning, pp. 95–102. Paris, September 2010Google Scholar
  10. 10.
    Bresolin D., Goranko V., Montanari A., Sciavicco G.: Propositional interval neighborhood logics: expressiveness, decidability, and undecidable extensions. Ann Pure Appl Logic 161(3), 289–304 (2009)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: Right propositional neighborhood logic over natural numbers with integer constraints for interval lengths. In: Proceedings of the 7th IEEE Conference on Software Engeneering and Formal Methods, pp. 240–249 (2009)Google Scholar
  12. 12.
    Bresolin, D., Montanari, A., Sala, P.: An optimal tableau-based decision algorithm for propositional neighborhood logic. In: Proceedings of the 24th Annual Symposium on Theoretical Aspects of Computer Science, vol. 4393, LNCS, pp. 549–560. Springer, Berlin (2007)Google Scholar
  13. 13.
    Bresolin, D., Montanari A., Sala P., Sciavicco G.: A tableau-based system for spatial reasoning about directional relations. In: Proceedings of the 18th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, vol. 5607, LNCS, pp. 123–137. Springer, Berlin (2009)Google Scholar
  14. 14.
    Bresolin D., Montanari A., Sciavicco G.: An optimal decision procedure for Right Propositional Neighborhood Logic. J. Autom. Reason. 38(1-3), 173–199 (2007)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Chaochen, Z., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time Systems. EATCS: Monographs in Theoretical Computer Science. Springer, Berlin (2004)Google Scholar
  16. 16.
    Chaochen, Z., Hansen, M.R., Sestoft, P.: Decidability and undecidability results for duration calculus. In: Proceedings of the 10th Annual Symposium on Theoretical Aspects of Computer Science, vol. 665, LNCS, pp. 58–68. Springer, Berlin (1993)Google Scholar
  17. 17.
    Chaochen Z., Hoare C.A.R., Ravn A.P.: A calculus of durations. Inf. Proc. Lett. 40(5), 269–276 (1991)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Chetcuti-Serandio N., Fariñas Del Cerro L.: A mixed decision method for duration calculus. J. Logic Comput. 10, 877–895 (2000)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Combi, C., Rossato, R.: Temporal constraints with multiple granularities in smart homes. In: Designing Smart Homes, vol 4008, LNCS, pp. 35–56 (2006)Google Scholar
  20. 20.
    Ghorbel, M., Segarra, M.T., Kerdreux, J., Thepaut, A., Mokhtari, M.: Networking and communication in smart home for people with disabilities. In: Proceedings of the 9th International Conference on Computers Helping People with Special Needs, vol. 3118, LNCS, pp. 937–944 (2004)Google Scholar
  21. 21.
    Goranko V., Montanari A., Sciavicco G.: Propositional interval neighborhood temporal logics. J. Univ. Comput. Sci. 9(9), 1137–1167 (2003)MathSciNetGoogle Scholar
  22. 22.
    Goranko V., Otto M. et al.: Model theory of modal logic. In: Blackburn, P. (ed.) Handbook of Modal Logic, pp. 249–329. Elsevier, Amsterdam (2007)CrossRefGoogle Scholar
  23. 23.
    Grädel E., Kolaitis P.G., Vardi M.Y.: On the decision problem for two-variable first-order logic. Bull. Symb. Logic 3(1), 53–69 (1997)MATHCrossRefGoogle Scholar
  24. 24.
    Halpern J., Shoham Y.: A propositional modal logic of time intervals. J. ACM 38(4), 935–962 (1991)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Hansen M.R., Chaochen Z.: Duration calculus: logical foundations. Formal Aspects Comput. 9, 283–330 (1997)MATHCrossRefGoogle Scholar
  26. 26.
    Hirshfeld Y., Rabinovich A.M.: Logics for real time: decidability and complexity. Fund. Inf. 62(1), 1–28 (2004)MathSciNetMATHGoogle Scholar
  27. 27.
    Kautz, H.A., Ladkin, P.B.: Integrating metric and qualitative temporal reasoning. In: Proceedings of the 9th National Conference on Artificial Intelligence, pp. 241–246 (1991)Google Scholar
  28. 28.
    Koymans R.: Specifying real-time properties with metric temporal logic. Real Time Syst. 2(4), 255–299 (1990)CrossRefGoogle Scholar
  29. 29.
    Montanari A., de Rijke M.: Two-sorted metric temporal logic. Theoret. Comput. Sci. 183(2), 187–214 (1997)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Montanari, A., Policriti, A.: Executing metric temporal logic. In: Proceedings of the IJCAI’97 Workshop on Programming in Temporal and Non Classical Logics, Nagoya (1997)Google Scholar
  31. 31.
    Mortimer M.: On languages with two variables. Zeitschr. f. Math. Logik u. Grundlagen d. Math. 21, 135–140 (1975)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Moszkowski, B.: Reasoning About Digital Circuits. Technical Report stan-cs-83-970. Dept. of Computer Science, Stanford University, Stanford (1983)Google Scholar
  33. 33.
    Otto M.: Two variable first-order logic over ordered domains. J. Symb. Logic. 66(2), 685–702 (2001)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: Proceedings of the 6th International Conference on Formal Modeling and Analysis of Timed Systems, pp. 1–13 (2008)Google Scholar
  35. 35.
    Sciavicco, G.: Temporal reasoning in Propositional Neighborhood Logic. In: Proceedings of the 2nd International Conference on Language and Technology, pp. 390–395 (2005)Google Scholar
  36. 36.
    Sciavicco, G., Juarez, J., Campos, M.: Quality checking of medical guidelines using interval temporal logics: a case-study. In: Proceedings of the 3rd International Work-conference on the Interplay between Natural and Artificial Computation, vol. 5602, LNCS, pp. 158–167 (2009)Google Scholar
  37. 37.
    Scott D.: A decision method for validity of sentences in two variables. J. Symb. Logic 27, 377 (1962)Google Scholar
  38. 38.
    Veloudis, S., Nissanke, N.: Duration calculus in the specification of safety requirements. In: Proceedings of the 5th International Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems, No. 1486, LNCS, pp. 103–112 (1998)Google Scholar
  39. 39.
    Venema Y.: A modal logic for chopping intervals. J. Logic Comput. 1(4), 453–476 (1991)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Davide Bresolin
    • 1
  • Dario Della Monica
    • 2
  • Valentin Goranko
    • 3
    • 4
  • Angelo Montanari
    • 2
  • Guido Sciavicco
    • 5
    • 6
  1. 1.University of VeronaVeronaItaly
  2. 2.University of UdineUdineItaly
  3. 3.Technical University of DenmarkLyngbyDenmark
  4. 4.Institute of Mathematics and InformaticsBulgarian Academy of SciencesSofiaBulgaria
  5. 5.University of MurciaMurciaSpain
  6. 6.University of Information Science and TechnologyOhridMacedonia

Personalised recommendations