Software & Systems Modeling

, Volume 10, Issue 2, pp 183–200 | Cite as

Büchi automata for modeling component connectors

  • Mohammad Izadi
  • Marcello Bonsangue
  • Dave Clarke
Open Access
Special Section Paper


Reo is an exogenous coordination language for component connectors extending data flow networks with synchronization and context-dependent behavior. The first proposed formalism to capture the operational semantics of Reo is called constraint automaton. In this paper, we propose another operational model of Reo based on Büchi automata in which port synchronization is modeled by records labeling the transitions, whereas context dependencies are stored in the states. It is shown that constraint automata can be recast into our proposed Büchi automata of records. Also, we provide a composition operator which models the joining of two connectors and show that it can be obtained by using two standard operators: alphabet extension and automata product. Our semantics has the advantage over previous models in that it is based on standard automata theory, so that existing theories and tools can be easily reused. Moreover, it is the first formal model addressing all of Reo’s features: synchronization, mutual exclusion, hiding, and context-dependency.


Büchi automata Component connector Reo Constraint automata 


Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Arbab F.: Reo: a channel-based coordination model for component composition. Math. Struct. Comput. Sci. 14(3), 329–366 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Arbab, F., Baier, C., de Boer, F., Rutten, J., Sirjani, M.: Synthesis of Reo circuites for implementation of component-connector automata specifications. In: Proceedings of Coordination Languages and Models (CORDINATION 2005), LNCS, vol. 3454, pp. 236–251. Springer-Verlag (2005)Google Scholar
  3. 3.
    Arbab, F., Chothia, T., Meng, S., Moon, Y.-J.: Component connectors with QoS guarantees. In: Proceedings of Coordination Languages and Models (CORDINATION 2007), LNCS, vol. 4467, pp. 286–304. Springer-Verlag (2007)Google Scholar
  4. 4.
    Arbab, F., Rutten, J.: A coinductive calculus of component connectors. In: Proceedings of Recent Trends in Algebraic Development Techniques, (WADT 2002) LNCS, vol. 2755, pp. 34–55. Springer-Verlag (2002)Google Scholar
  5. 5.
    Arbab, F., Baier, C., de Boer, F., Rutten, J.: Models and temporal logics for timed component connectors. In: Proceedings of the IEEE International Conference on Software Engineering and Formal Methods (SEFM), pp. 198–207. IEEE Computer Society (2004)Google Scholar
  6. 6.
    Baier C., Sirjani M., Arbab F., Rutten J.: Modelling component connectors in Reo by constraint automata. Sci. Comput. Program. 61, 75–113 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Baier, C., Wolf, V.: Stochastic reasoning about channel-based component connectors. In: Proceedings of Coordination Languages and Models (CORDINATION 2006), LNCS, vol. 4037, pp. 1–15. Springer-Verlag (2006)Google Scholar
  8. 8.
    Bliudze S., Sifakis J.: The algebra of connectors—structuring interaction in BIP. IEEE Trans. Comput. 57(10), 1315–1330 (2008)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Bonsangue, M., Clarke, D., Silva, A.: Automata for context-dependent connectors. In: Proceedings of Coordination Languages and Models (CORDINATION 2009), LNCS, vol. 5521, pp. 184–203. Springer-Verlag (2009)Google Scholar
  10. 10.
    Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: an open source tool for symbolic model checking. In: Proceedings of the 14th CAV, LNCS, vol. 2404, pp. 359–364. Springer-Verlag (2002)Google Scholar
  11. 11.
    Clarke E., Grumberg O., Peled D.: Model Checking. The MIT Press, Cambridge (1999)Google Scholar
  12. 12.
    Clarke, D.: Coordination: Reo, nets, and logic. In: Proceedings of Formal Methods on Components and Objects (FMCO 2008), LNCS, vol. 5382, pp. 226–256. Springer-Verlag (2008)Google Scholar
  13. 13.
    Clarke D., Costa D., Arbab F.: Connector colouring I: synchronisation and context dependency. Sci. Comput. Program. 66(3), 205–225 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Holzmann G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295 (1997)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Hopcroft J., Motwani R., Ullman J.: Introduction to Automata Theory, Languages, and Computation. 3rd edn. Addison-Wesley, Reading (2006)Google Scholar
  16. 16.
    Izadi, M., Bonsangue, M.: Recasting constraint automata into Büchi automata. In: Proceedings of ICTAC 2008, LNCS, vol. 5160, pp. 156–170, Springer-Verlag (2008)Google Scholar
  17. 17.
    Izadi, M., Bonsangue, M., Clarke, D.: Modeling Component Connectors: synchronisation and Context-Dependency. In: Proceedings of 6th IEEE International Conference on Software Engineering and Formal Methods (SEFM 2008), pp. 303–312. IEEE Computer Society (2008)Google Scholar
  18. 18.
    Kaplan D.: Regular expressions and the equivalence of programs. J. Comput. Syst. Sci. 3, 361–386 (1969)CrossRefzbMATHGoogle Scholar
  19. 19.
    Kozen D.: Automata on guarded strings and applications. Matématica Contemporânea 24, 117–139 (2003)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Kupferman, O., Vardi, M.: Verification of fair transition systems. In: Proceedings of the 8th International Conference on Computer Aided Verification CAV, LNCS. Springer (1996)Google Scholar
  21. 21.
    Mousavi, M., Sirjani, M., Arbab, F.: Formal sematics and analysis of component connectors in Reo. In: Proceedings of FOCLASA 2005, ENTCS, vol. 154, pp. 83–99. Elsevier (2005)Google Scholar
  22. 22.
    Papadopoulos G., Arbab F.: Coordination models and languages. Adv. Comput. 46, 329–400 (1998)CrossRefGoogle Scholar
  23. 23.
    Remy, D.: Efficient representation of extensible records. In: Proceedings of ACM SIGPLAN Workshop on ML and its applications, pp. 12–16 (1994)Google Scholar
  24. 24.
    Szyperski C., Gruntz D., Mürer S.: Component Software: Beyond Object-Oriented Programming. 2nd edn. Addison-Wesley, Reading (2002)Google Scholar
  25. 25.
    Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science, vol. B, pp. 133–191. Elsevier (1990)Google Scholar
  26. 26.
    Vardi, M.: An automata-theoretic approach to linear temporal logic. In: LNCS, vol. 1043, pp. 238–266. Springer-Verlag (1996)Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Mohammad Izadi
    • 1
    • 2
  • Marcello Bonsangue
    • 1
  • Dave Clarke
    • 3
  1. 1.Leiden Institute of Advanced Computer Science (LIACS)Leiden UniversityLeidenThe Netherlands
  2. 2.Institute for Humanities and Cultural Studies (IHCS)TehranIran
  3. 3.Department of Computer ScienceKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations