Advertisement

Software & Systems Modeling

, Volume 10, Issue 2, pp 201–217 | Cite as

Testing timed systems modeled by Stream X-machines

  • Mercedes G. Merayo
  • Manuel Núñez
  • Robert M. Hierons
Special Section Paper

Abstract

Stream X-machines have been used to specify real systems where complex data structures. They are a variety of extended finite state machine where a shared memory is used to represent communications between the components of systems. In this paper we introduce an extension of the Stream X-machines formalism in order to specify systems that present temporal requirements. We add time in two different ways. First, we consider that (output) actions take time to be performed. Second, our formalism allows to specify timeouts. Timeouts represent the time a system can wait for the environment to react without changing its internal state. Since timeous affect the set of available actions of the system, a relation focusing on the functional behavior of systems, that is, the actions that they can perform, must explicitly take into account the possible timeouts. In this paper we also propose a formal testing methodology allowing to systematically test a system with respect to a specification. Finally, we introduce a test derivation algorithm. Given a specification, the derived test suite is sound and complete, that is, a system under test successfully passes the test suite if and only if this system conforms to the specification.

Keywords

Formal testing Timed systems Stream X-machines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur R., Dill D.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Baeten J.C.M., Middelburg C.A.: Process Algebra with Timing EATCS. Monograph. Springer, Berlin (2002)Google Scholar
  3. 3.
    Barnard J.: COMX: a design methodology using communicating X-machines. Inform. Softw. Technol. 40(5–6), 271–280 (1998)CrossRefGoogle Scholar
  4. 4.
    Batth, S.S., Rodrigues Vieira, E., Cavalli, A., Uyar, M.Ü.: Specification of timed EFSM fault models in SDL. In: 27th IFIP WG 6.1 International Conference on Formal Techniques for Networked and Distributed Systems, FORTE’07. Lecture Notes in Computer Sciences, vol. 4574, pp. 50–65. Springer, Berlin (2007)Google Scholar
  5. 5.
    Bogdanov K., Holcombe M., Ipate F., Seed L., Vanak S.: Testing methods for X-machines: a review. Formal Asp. Comput. 18, 3–30 (2006)CrossRefMATHGoogle Scholar
  6. 6.
    Bosik B.S., Uyar M.Ü.: Finite state machine based formal methods in protocol conformance testing. Comput. Netw. ISDN Syst. 22, 7–33 (1991)CrossRefGoogle Scholar
  7. 7.
    Brandán Briones, L., Brinksma, E.: Testing real-time multi input-output systems. In: 7th International Conference on Formal Engineering Methods, ICFEM’05. Lecture Notes in Computer Sciences, vol. 3785, pp. 264–279. Springer, Berlin (2005)Google Scholar
  8. 8.
    Brinksma, E., Tretmans, J.: Testing transition systems: an annotated bibliography. In: 4th Summer School on Modeling and Verification of Parallel Processes, MOVEP’00. Lecture Notes in Computer Sciences, vol. 2067, pp. 187–195. Springer, Berlin (2001)Google Scholar
  9. 9.
    Cardell-Oliver R.: Conformance tests for real-time systems with timed automata specifications. Formal Asp. Comput. 12(5), 350–371 (2000)CrossRefMATHGoogle Scholar
  10. 10.
    Cardell-Oliver, R., Glover, T.: A practical and complete algorithm for testing real-time systems. In: 5th International Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT’98. Lecture Notes in Computer Sciences, vol. 1486, pp. 251–260. Springer, Berlin (1998)Google Scholar
  11. 11.
    Chow T.S.: Testing software design modelled by finite state machines. IEEE Trans. Softw. Eng. 4, 178–187 (1978)CrossRefGoogle Scholar
  12. 12.
    Clarke, D., Lee, I.: Automatic generation of tests for timing constraints from requirements. In: 3rd Workshop on Object-Oriented Real-Time Dependable Systems, WORDS’97, pp. 199–206. IEEE Computer Society Press, New York (1997)Google Scholar
  13. 13.
    Davies J., Schneider S.: A brief history of timed CSP. Theor. Comput. Sci. 138, 243–271 (1995)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    El-Fakih K., Yevtushenko N., von Bochmann G.: FSM-based incremental conformance testing methods. IEEE Trans. Softw. Eng. 30(7), 425–436 (2004)CrossRefGoogle Scholar
  15. 15.
    En-Nouaary A., Dssouli R., Khendek F.: Timed Wp-method: testing real time systems. IEEE Trans. Softw. Eng. 28(11), 1024–1039 (2002)CrossRefGoogle Scholar
  16. 16.
    Fouchal, H., Petitjean, E., Salva, S.: An user-oriented testing of real time systems. In: IEEE Workshop on Real-Time Embedded Systems, RTES’01. IEEE Computer Society Press, New York (2001)Google Scholar
  17. 17.
    Hennessy M., Regan T.: A process algebra for timed systems. Inform. Comput. 117(2), 221–239 (1995)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.: Testing real-time systems using UPPAAL. In: Formal Methods and Testing. Lecture Notes in Computer Sciences, vol. 4949, pp. 77–117. Springer, Berlin (2008)Google Scholar
  19. 19.
    Hierons, R.M., Bogdanov, K., Bowen, J.P., Cleaveland, R., Derrick, J., Dick, J., Gheorghe, M., Harman, M., Kapoor, K., Krause, P., Luettgen, G., Simons, A.J.H, Vilkomir, S., Woodward, M.R., Zedan, H.: Using formal methods to support testing. ACM Comput. Surv. 41(2) (2009)Google Scholar
  20. 20.
    Hierons, R.M., Bowen, J.P., Harman, M. (eds): Formal Methods and Testing. Lecture Notes in Computer Sciences, vol. 4949. Springer, Berlin (2008)Google Scholar
  21. 21.
    Hierons R.M., Harman M.: Testing conformance of a deterministic implementation to a non-deterministic stream X-machine. Theor. Comput. Sci. 323(1–3), 191–233 (2004)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Hierons R.M., Ipate F.: Testing a deterministic implementation against a non-controllable non-deterministic stream X-machine. Formal Asp. Comput. 20(6), 597–617 (2008)CrossRefMATHGoogle Scholar
  23. 23.
    Hierons R.M., Merayo M.G., Núñez M.: Testing from a stochastic timed system with a fault model. J. Log. Algebraic Program. 78(2), 98–115 (2009)CrossRefMATHGoogle Scholar
  24. 24.
    Higashino, T, Nakata, A, Taniguchi, K., Cavalli, A.: Generating test cases for a timed I/O automaton model. In: 12th International Workshop on Testing of Communicating Systems, IWTCS’99, pp. 197–214. Kluwer, Dordrecht (1999)Google Scholar
  25. 25.
    Holcombe M., Ipate F.: Correct Systems: Building a Business Process Solution. Springer, Berlin (1998)MATHGoogle Scholar
  26. 26.
    Ipate F.: Testing against a non-controllable stream X-machine using state counting. Theor. Comput. Sci. 353(1), 291–316 (2006)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Ipate F., Holcombe M.: An integration testing method that is proved to find all faults. Int. J. Comput. Math. 63(3–4), 159–178 (1997)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Ipate F., Holcombe M.: Testing data processing-oriented systems from Stream X-machine models. Theor. Comput. Sci. 403(2–3), 171–191 (2008)MathSciNetGoogle Scholar
  29. 29.
    Kefalas P., Eleftherakis G., Kehris E.: Communicating X-machines: a practical approach for formal and modular specification of large systems. Inform. Softw. Technol. 45(5), 269–280 (2003)CrossRefGoogle Scholar
  30. 30.
    Kehris E., Eleftherakis G., Kefalas P.: Using X–machines to model and test discrete event simulation programs. In: Mastorakis, N. (eds) Systems and Control: Theory and Applications, pp. 163–171. World Scientific and Engineering Society Press, Greece (2000)Google Scholar
  31. 31.
    Krichen, M., Tripakis, S.: An expressive and implementable formal framework for testing real-time systems. In: 17th International Conference on Testing of Communicating Systems, TestCom’05. Lecture Notes in Computer Sciences, vol. 3502, pp. 209–225. Springer, Berlin (2005)Google Scholar
  32. 32.
    Lee D., Yannakakis M.: Principles and methods of testing finite state machines: a survey. Proc. IEEE 84(8), 1090–1123 (1996)CrossRefGoogle Scholar
  33. 33.
    Mandrioli D., Morasca S., Morzenti A.: Generating test cases for real time systems from logic specifications. ACM Trans. Comput. Syst. 13(4), 356–398 (1995)CrossRefGoogle Scholar
  34. 34.
    Merayo, M.G., Hierons, R.M., Núñez, M.: Extending stream X-machines to specify and test systems with timeouts. In: 6th IEEE International Conference on Software Engineering and Formal Methods, SEFM’08, pp. 201–210. IEEE Computer Society Press, New York (2008)Google Scholar
  35. 35.
    Merayo, M.G., Núñez, M.: Testing conformance on stochastic stream X-machines. In: 5th IEEE International Conference on Software Engineering and Formal Methods, SEFM’07, pp. 227–236. IEEE Computer Society Press, New York (2007)Google Scholar
  36. 36.
    Merayo M.G., Núñez M., Rodríguez I.: Extending EFSMs to specify and test timed systems with action durations and timeouts. IEEE Trans. Comput. 57(6), 835–848 (2008)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Merayo M.G., Núñez M., Rodríguez I.: Formal testing from timed finite state machines. Comput. Netw. 52(2), 432–460 (2008)CrossRefMATHGoogle Scholar
  38. 38.
    Nicollin, X., Sifakis, J.: An overview and synthesis on timed process algebras. In: 3rd International Conference on Computer Aided Verification, CAV’91. Lecture Notes in Computer Sciences, vol. 575, pp. 376–398. Springer, Berlin (1991)Google Scholar
  39. 39.
    Peleska J., Siegel M.: Test automation of safety-critical reactive systems. S. Afr. Comput. J. 19, 53–77 (1997)Google Scholar
  40. 40.
    Petrenko, A.: Fault model-driven test derivation from finite state models: annotated bibliography. In: 4th Summer School on Modeling and Verification of Parallel Processes, MOVEP’00. Lecture Notes in Computer Sciences, vol. 2067, pp. 196–205. Springer, Berlin (2001)Google Scholar
  41. 41.
    Petrenko, A., Yevtushenko, N., von Bochmann, G.: Testing deterministic implementations from their nondeterministic FSM specifications. In: 9th IFIP Workshop on Testing of Communicating Systems, IWTCS’96, pp. 125–140. Chapman & Hall, London (1996)Google Scholar
  42. 42.
    Petrenko, A., Yevtushenko, N., Lebedev, A.V., Das, A.: Nondeterministic state machines in protocol conformance testing. In: 6th IFIP Workshop on Protocol Test Systems, IWPTS’93, pp. 363–378. North-Holland, Amsterdam (1993)Google Scholar
  43. 43.
    Quemada J., de Frutos D., Azcorra A.: TIC: a timed calculus. Formal Asp. Comput. 5, 224–252 (1993)CrossRefMATHGoogle Scholar
  44. 44.
    Reed G.M., Roscoe A.W.: A timed model for communicating sequential processes. Theor. Comput. Sci. 58, 249–261 (1988)CrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    Rodríguez I., Merayo M.G., Núñez M.: \({\mathcal {HOT\,L}}\): hypotheses and observations testing logic. J. Log. Algebraic Program. 74(2), 57–93 (2008)CrossRefMATHGoogle Scholar
  46. 46.
    Schmaltz, J., Tretmans, J.: On conformance testing for timed systems. In: 6th International Conference on Formal Modeling and Analysis of Timed Systems, FORMATS’08. Lecture Notes in Computer Sciences, vol. 5215, pp. 250–264. Springer, Berlin (2008)Google Scholar
  47. 47.
    Sifakis, J.: Use of Petri nets for performance evaluation. In: 3rd International Symposium on Measuring, Modelling and Evaluating Computer Systems, pp. 75–93. North-Holland, Amsterdam (1977)Google Scholar
  48. 48.
    Springintveld, J., Vaandrager, F., D’Argenio, P.R.: Testing timed automata. Theor. Comput. Sci. 254(1–2), 225–257 (2001) [Previously appeared as Technical Report CTIT-97-17, University of Twente (1997)]Google Scholar
  49. 49.
    Stannett, M.: Computation over arbitrary models of time. Technical Report CS-2001-08, Department of Computer Science, Sheffield University (2001)Google Scholar
  50. 50.
    Tretmans, J.: Model based testing with labelled transition systems. In: Formal Methods and Testing. Lecture Notes in Computer Sciences, vol. 4949, pp. 1–38. Springer, Berlin (2008)Google Scholar
  51. 51.
    Uyar M.Ü., Batth S.S., Wang Y., Fecko M.A.: Algorithms for modeling a class of single timing faults in communication protocols. IEEE Trans. Comput. 57(2), 274–288 (2008)CrossRefGoogle Scholar
  52. 52.
    Uyar M.Ü., Fecko M.A., Sethi A.S., Amar P.D.: Testing protocols modeled as FSMs with timing parameters. Comput. Netw. 31(18), 1967–1998 (1999)CrossRefGoogle Scholar
  53. 53.
    Yi, W.: CCS+ Time = an interleaving model for real time systems. In: 18th International Colloquium on Automata, Languages and Programming, ICALP’91. Lecture Notes in Computer Sciences, vol. 510, pp. 217–228. Springer, Berlin (1991)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Mercedes G. Merayo
    • 1
  • Manuel Núñez
    • 1
  • Robert M. Hierons
    • 2
  1. 1.Dep. Sistemas Informáticos y ComputaciónUniversidad Complutense de MadridMadridSpain
  2. 2.School of Information Systems and Computing MathematicsBrunel UniversityUxbridge, MiddlesexUK

Personalised recommendations