Oncologie

, Volume 19, Issue 7–8, pp 209–230 | Cite as

Congrès l’association américaine de recherche contre le cancer — AACR 2017

Compte Rendu / Report

Résumé

Plus de 21 900 participants issus de plus de 80 pays ont participé cette année à la réunion annuelle de l’AACR qui s’est tenue à Washington DC. Environ 6 400 travaux y ont été présentés, travaux qui abordaient de nombreuses découvertes faites dans les différents domaines de la recherche sur le cancer: prévention, biologie du cancer, études translationnelles et cliniques. De nombreuses études incluant des sciences non biologiques telles que la physique, la chimie, les mathématiques ou la bio-informatique ont également été dévoilées, accroissant la diversité et l’originalité des données présentées. Plus spécifiquement, les découvertes récentes faites dans le domaine de l’immunologie tumorale et de l’immunothérapie ont de nouveau été largement abordées et discutées. À ce sujet, notre compréhension de la réponse immunitaire contre les tissus tumoraux et des mécanismes d’échappement immunitaire mis en jeu s’est fortement accrue ces dernières années. Celle-ci a contribué au développement de nouvelles immunothérapies et à l’identification de nouvelles stratégies permettant d’optimiser l’utilisation de celles déjà existantes. Dans ce numéro spécial d’Oncologie, les jeunes médecins de l’association française AERIO (Association d’enseignement et de recherche des internes d’oncologie), supervisés par des médecinschercheurs, présentent les sujets les plus pertinents présentés lors de la réunion de l’AACR 2017. Cette action fait partie intégrante d’un projet qui permet chaque année à cinq jeunes médecins de participer à cette conférence de premier plan et d’en diffuser, grâce à la rédaction d’articles, les informations clés qui en sont issues auprès des professionnels ayant été dans l’incapacité d’y assister.

Mots clés

AACR Cancer Immunothérapie Prévention Bio-informatique Métabolisme 

American Association for Cancer Research — AACR congress, 2017

Abstract

The Annual American Association for Cancer Research (AACR) meeting for this year was took place at Washington, DC and over 21,900 participants from more than 80 countries attended it. About 6,400 proffered abstracts were presented reporting many advances done across different areas of cancer research: prevention, cancer biology, and clinical and translational studies. Non-biological sciences including physics, chemistry, mathematics, computational biology, and bioinformatics participated to the increased diversity and originality of the presented works. Major discoveries done in the field of tumor immunology and immunotherapy were once again a main focus of the meeting with their broad discussions. In particular, our better understanding of the immune response towards cancer and the mechanisms of immune escape has rapidly grown in the past. This contributed to the development of new immunotherapies and led to the identification of new strategies to better use those that already exist. In this special issue of Oncology, mentoring medical doctors of the French association AERIO (Association d’enseignement et de recherche des internes d’oncologie) describe the most relevant topics presented at the meeting. This mentoring is part of an exciting project wherein five young medical doctors are permitted to participate each year at the annual AACR meeting to report, through the redaction and publication of articles, key information to people who could not attend to the conference.

Keywords

AACR Cancer Immunotherapy Prevention Bioinformatics Metabolism 

Références

  1. 1.
    Porporato PE, Dhup S, Dadhich RK, et al (2011) Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2, Doi:10.3389/fphar.2011.00049Google Scholar
  2. 2.
    Renner K, Singer K, Koehl GE, et al (2017) Metabolic hallmarks of tumor and immune cells in the tumor microenvironment. Front Immunol 8, Doi:10.3389/fimmu.2017.00248Google Scholar
  3. 3.
    Hall A, Meyle KD, Lange MK, et al (2013) Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the (V600E)BRAF oncogene. Oncotarget 4:584–99, Doi:10.18632/oncotarget.965CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mehta RS, Nishihara R, Cao Y, et al (2017) Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue. JAMA Oncol, Doi: 10.1001/jamaoncol.2016.6374Google Scholar
  5. 5.
    Galon J, Pagès F, Marincola FM, et al (2012) Cancer classification using the immunoscore: a worldwide task force. J Transl Med 10:205CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Obeid M, Tesniere A, Ghiringhelli F, et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Med 13:54–61, Doi: 10.1038/nm1523CrossRefPubMedGoogle Scholar
  7. 7.
    Pietrocola F, Pol J, Vacchelli E, et al (2016) Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell 30:147–60, Doi:10.1016/j.ccell.2016.05.016CrossRefPubMedGoogle Scholar
  8. 8.
    Galluzzi L, Buqué A, Kepp O, et al (2016) Immunogenic cell death in cancer and infectious disease. Nature Rev Immunol 17:97–111, Doi:10.1038/nri.2016.107CrossRefGoogle Scholar
  9. 9.
    Eisenberg T, Abdellatif M, Schroeder S, et al (2016) Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med 22:1428–38, Doi:10.1038/nm.4222CrossRefPubMedGoogle Scholar
  10. 10.
    Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–37, Doi:10.1038/nm.3394CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Adams JL, Smothers J, Srinivasan R, Hoos A (2015) Big opportunities for small molecules in immuno-oncology. Nature Rev Drug Discov 14:603–22, Doi:10.1038/nrd4596CrossRefGoogle Scholar
  12. 12.
    Daigo K, Inforzato A, Barajon I, et al (2016) Pentraxins in the activation and regulation of innate immunity. Immunol Rev 274:202–17, Doi:10.1111/imr.12476CrossRefPubMedGoogle Scholar
  13. 13.
    Bonavita E, Mantovani A, Garlanda C (2015) PTX3 acts as an extrinsic oncosuppressor. Oncotarget 6:32309–10, Doi:10.18632/oncotarget.4845CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sulzmaier FJ, Jean C, Schlaepfer DD (2014) FAK in cancer: mechanistic findings and clinical applications. Nature Rev Cancer 14:598–610, Doi:10.1038/nrc3792CrossRefGoogle Scholar
  15. 15.
    Jiang H, Hegde S, Knolhoff BL, et al (2016) Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med 22:851–60, Doi:10.1038/nm.4123CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kaneda MM, Messer KS, Ralainirina N, et al (2016) PI3K? is a molecular switch that controls immune suppression. Nature 539:437–42, Doi:10.1038/nature19834CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    De Henau O, Rausch M, Winkler D, et al (2016) Overcoming resistance to checkpoint blockade therapy by targeting PI3K? in myeloid cells. Nature 539:443–7, Doi:10.1038/nature20554CrossRefPubMedGoogle Scholar
  18. 18.
    Cassier PA, Italiano A, Gomez-Roca CA, et al (2015) CSF1R inhibition with emactuzumab in locally advanced diffuse-type tenosynovial giant cell tumours of the soft tissue: a doseescalation and dose-expansion phase I study. Lancet Oncol 16:949–56, Doi:10.1016/S1470-2045(15)00132-1CrossRefPubMedGoogle Scholar
  19. 19.
    Aldinucci D, Colombatti A (2014) The inflammatory chemokine CCL5 and cancer progression. Mediators Inflamm 2014:292376, Doi:10.1155/2014/292376CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Halama N, Zoernig I, Berthel A, et al (2016) Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients. Cancer Cell 29:587–601, Doi:10.1016/j.ccell.2016.03.005CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang Q, Liu L, Gong C, et al (2012) Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PloS One 7:e50946, Doi:10.1371/journal.pone.0050946CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51, Doi:10.1016/j.cell.2010.03.014CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hortobagyi GN, Stemmer SM, Burris HA, et al (2016) Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med 375:1738–48, Doi:10.1056/NEJMoa1609709CrossRefPubMedGoogle Scholar
  24. 24.
    Bardia A, Mayer IA, Diamond JR, et al (2017) Efficacy and safety of anti-Trop2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J Clin Oncol Doi:10.1200/JCO.2016.70.8297Google Scholar
  25. 25.
    Lieberman S, Tomer A, Ben-Chetrit A, et al (2016) Population screening for BRCA1/BRCA2 founder mutations in Ashkenazi Jews: proactive recruitment compared with self-referral. Genet Med, Doi:10.1038/gim.2016.182Google Scholar
  26. 26.
    Hirsh-Yechezkel G, Chetrit A, Lubin F, et al (2003) Population attributes affecting the prevalence of BRCA mutation carriers in epithelial ovarian cancer cases in Israel. Gynecol Oncol 89:494–8CrossRefPubMedGoogle Scholar
  27. 27.
    Domchek SM, Friebel TM, Singer CF, et al (2010) Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA 304:967–75, Doi: 10.1001/jama.2010.1237CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Manchanda R, Legood R, Burnell M, et al (2015) Costeffectiveness of population screening for BRCA mutations in Ashkenazi Jewish women compared with family history-based testing. JNCI 107, Doi: 10.1093/jnci/dju380Google Scholar
  29. 29.
    Chan AT, Giovannucci EL, Meyerhardt JA, et al (2005) Long-term use of aspirin and nonsteroidal anti-inflammatory drugs and risk of colorectal cancer. JAMA 294:914–23, Doi: 10.1001/jama.294.8.914CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rothwell PM, Wilson M, Elwin CE, et al (2010) Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 376:1741–50, Doi: 10.1016/S0140-6736(10)61543-7CrossRefPubMedGoogle Scholar
  31. 31.
    Giardiello FM, Hamilton SR, Krush AJ, et al (1993) Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med 328:1313–6, Doi: 10.1056/NEJM199305063281805CrossRefPubMedGoogle Scholar
  32. 32.
    Giardiello FM, Yang VW, Hylind LM, et al (2002) Primary chemoprevention of familial adenomatous polyposis with sulindac. N Engl J Med 346:1054–9, Doi: 10.1056/NEJMoa012015CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chan AT, Arber N, Burn J, et al (2012) Aspirin in the chemoprevention of colorectal neoplasia: an overview. Cancer Prev Res (Philadelphia, PA) 5:164–78, Doi: 10.1158/1940-6207.CAPR-11-0391CrossRefGoogle Scholar
  34. 34.
    Steinbach G, Lynch PM, Phillips RKS, et al (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342:1946–52, Doi: 10.1056/NEJM200006293422603CrossRefPubMedGoogle Scholar
  35. 35.
    Samadder NJ, Neklason DW, Boucher KM, et al (2016) Effect of sulindac and erlotinib vs. placebo on duodenal neoplasia in familial adenomatous polyposis: a randomized clinical trial. JAMA 315:1266–75, Doi: 10.1001/jama.2016.2522Google Scholar
  36. 36.
    Burn J, Bishop DT, Mecklin JP, et al (2008) Effect of aspirin or resistant starch on colorectal neoplasia in the Lynch syndrome. N Engl J Med 359:2567–78, Doi: 10.1056/NEJMoa0801297CrossRefPubMedGoogle Scholar
  37. 37.
    Burn J, Gerdes AM, Macrae F, et al (2011) Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet 378:2081–7, Doi: 10.1016/S0140-6736(11)61049-0CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chen S, Parmigiani G (2007) Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 25:1329–33, Doi: 10.1200/JCO.2006.09.1066CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Rebbeck TR, Mitra N, Wan F, et al (2015) Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA 313:1347–61, Doi: 10.1001/jama.2014.5985CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rebbeck TR, Kauff ND, Domchek SM (2009) Meta-analysis of risk reduction estimates associated with risk-reducing salpingooophorectomy in BRCA1 or BRCA2 mutation carriers. JNCI 101:80–7, Doi: 10.1093/jnci/djn442CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Parsons DW, Roy A, Yang Y, et al (2016 Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncol 2:616–24, Doi: 10.1001/jamaoncol.2015.5699CrossRefGoogle Scholar
  42. 42.
    Easton DF, Pharoah PDP, Antoniou AC, et al (2015) Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med 372:2243–57, Doi: 10.1056/NEJMsr1501341CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tung N, Domchek SM, Stadler Z, et al (2016) Counselling framework for moderate-penetrance cancer-susceptibility mutations. Nat Rev Clin Oncol 13:581–8, Doi: 10.1038/nrclinonc.2016.90CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Schrader KA, Cheng DT, Joseph V, et al (2016) Germline variants in targeted tumor sequencing using matched normal DNA. JAMA Oncol 2:104–11, Doi: 10.1001/jamaoncol.2015.5208CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Mucci LA, Hjelmborg JB, Harris JR, et al (2016) Familial risk and heritability of cancer among twins in Nordic countries. JAMA 315:68–76, Doi: 10.1001/jama.2015.17703CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Amos CI, Dennis J, Wang Z, et al (2017) The OncoArray consortium: a network for understanding the genetic architecture of common cancers. Cancer Epidemiol Biomarkers Prev 26:126–35, Doi: 10.1158/1055-9965.EPI-16-0106CrossRefPubMedGoogle Scholar
  47. 47.
    Pharoah PDP, Antoniou A, Bobrow M, et al (2002) Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet 31:33–6, Doi: 10.1038/ng853CrossRefPubMedGoogle Scholar
  48. 48.
    Xu J, Sun J, Zheng SL (2013) Prostate cancer risk-associated genetic markers and their potential clinical utility. Asian J Androl 15:314–22, Doi: 10.1038/aja.2013.42CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Pritchard CC, Mateo J, Walsh MF, et al (2016) Inherited DNArepair gene mutations in men with metastatic prostate cancer. N Engl J Med 375:443–53, Doi: 10.1056/NEJMoa1603144CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Conran CA, Na R, Chen H, et al (2016) Population-standardized genetic risk score: the SNP-based method of choice for inherited risk assessment of prostate cancer. Asian J Androl 18:520–4, Doi: 10.4103/1008-682X.179527CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Al Olama AA, Kote-Jarai Z, Berndt SI, et al (2014) A metaanalysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat Genet 46:1103–9, Doi: 10.1038/ng.3094CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Chen H, Liu X, Brendler CB, et al (2016) Adding genetic risk score to family history identifies twice as many high-risk men for prostate cancer: results from the prostate cancer prevention trial. The Prostate 76:1120–9, Doi: 10.1002/pros.23200CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Feng BJ (2017) PERCH: a unified framework for disease gene prioritization. Hum Mutat 38:243–51, Doi: 10.1002/humu.23158CrossRefPubMedGoogle Scholar
  54. 54.
    Rausch T, Jones DTW, Zapatka M, et al (2012) Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148:59–71, Doi: 10.1016/j.cell.2011.12.013CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hettmer S, Archer NM, Somers GR, et al (2014) Anaplastic rhabdomyosarcoma in TP53 germline mutation carriers. Cancer 120:1068–75, Doi: 10.1002/cncr.28507CrossRefPubMedGoogle Scholar
  56. 56.
    Fischer NW, Prodeus A, Malkin D, Gariépy J (2016) p53 oligomerization status modulates cell fate decisions between growth, arrest and apoptosis. Cell Cycle (Georgetown, Tex.) 15:3210–9, Doi: 10.1080/15384101.2016.1241917CrossRefGoogle Scholar
  57. 57.
    Zhu J, Sammons MA, Donahue G, et al (2015) Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature 525:206–11, Doi: 10.1038/nature15251CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Samuel N, Wilson G, Lemire M, et al (2016) Genome-wide DNA methylation analysis reveals epigenetic dysregulation of microRNA-34A in TP53-associated cancer susceptibility. J Clin Oncol 34:3697–704, Doi: 10.1200/JCO.2016.67.6940CrossRefGoogle Scholar
  59. 59.
    Savage SA, Alter BP (2009) Dyskeratosis congenita. Hematol Oncol Clin North Am 23:215–31, Doi: 10.1016/j.hoc.2009.01.003CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Baird DM (2010) Variation at the TERT locus and predisposition for cancer. Expert Rev Mol Med 12:e16, Doi: 10.1017/S146239941000147XCrossRefPubMedGoogle Scholar
  61. 61.
    Zhang J, Walsh MF, Wu G, et al (2015) Germline mutations in predisposition genes in pediatric cancer. N Engl J Med 373:2336–46, Doi: 10.1056/NEJMoa1508054CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Slavin TP, Blazer KR, Weitzel JN (2016) When clinical care depends on the answer: the challenges of assessing germline cancer gene variants. J Clin Oncol 34:4061–3, Doi: 10.1200/JCO.2016.69.7151CrossRefPubMedGoogle Scholar
  63. 63.
    Vijai J, Topka S, Villano D, et al (2016) A recurrent ERCC3 truncating mutation confers moderate risk for breast cancer. Cancer Discov, Doi: 10.1158/2159-8290.CD-16-0487Google Scholar
  64. 64.
    Charoentong P, Finotello F, Angelova M, et al (2017) Pan-cancer immunogenomic analyses reveal genotype–immunophenotype relationships and predictors of response to checkpoint blockade. Cell Reports 18:248–62, Doi: 10.1016/j.celrep.2016.12.019CrossRefPubMedGoogle Scholar
  65. 65.
    Gulshan V, Peng L, Coram M, et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316:2402–10, Doi: 10.1001/jama.2016.17216CrossRefPubMedGoogle Scholar
  66. 66.
    Liu Y, Gadepalli K, Norouzi M, et al (2017) Detecting cancer metastases on gigapixel pathology images. Computer Vision and Pattern RecognitionGoogle Scholar

Copyright information

© Lavoisier 2017

Authors and Affiliations

  1. 1.AERIOParisFrance
  2. 2.Alliance pour la recherche en cancérologie (Aprec), service d’oncologie médicale, hôpital Tenonhôpitaux universitaires de l’Est-Parisien (AP–HP)ParisFrance
  3. 3.Alliance pour la recherche en cancérologie (Aprec), service d’oncologie médicale et de thérapie cellulaire, hôpital Tenoninstitut universitaire de cancérologie, université Pierre-et-Marie-Curie, hôpitaux universitaires de l’Est-Parisien (AP–HP)ParisFrance

Personalised recommendations