, Volume 9, Issue 4, pp 286–293 | Cite as

Imagerie par résonance magnétique (IRM) corps entier en cancérologie

  • C. Lin
  • A. Luciani
  • C. Haioun
  • F. Pigneur
  • J. -F. Deux
  • P. Zerbib
  • A. Vignaud
  • R. Raymond
  • H. Kobeiter
  • E. Itti
  • A. Rahmouni


L’IRM est désormais une technique alternative aux autres outils d’imagerie corps entier — incluant scintigraphies, TEP-TDM et TDM. Alternative d’abord par la possibilité désormais offerte de couvrir l’ensemble du corps humain en IRM avec des temps d’imagerie limités; alternative aussi et surtout car des outils d’imagerie fonctionnelle — incluant imagerie de diffusion et de perfusion — peuvent naturellement se combiner à cette large couverture anatomique, alternative enfin de par l’absence d’irradiation induite par I’IRM comparativement aux autres techniques citées plus haut. Nous détaillerons ici les progrès de l’instrumentation IRM qui ont rendu possible cette émergence, avant de citer les premières applications cliniques de ce nouvel outil.

Mots clés

IRM Corps entier Oncologie Imagerie fonctionnelle 

Whole body magnetic resonance imaging (MRI) in oncology


MRI now offers an alternative imaging technique that combines functional tools with expanded anatomical coverage. Technical progress in magnetic resonance has reduced acquisition times, allowed perfusion and diffusion imaging to be combined with whole body scanning, and made it possible to perform whole body scanning without irradiation. Here we detail the technical advances in whole body MRI and the emerging clinical applications resulting from this new imaging tool.


MRI Whole Body Oncology Functional Imaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antoch G, Vogt FM, Freudenberg LS, et al. (2003) Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 290: 3199–206PubMedCrossRefGoogle Scholar
  2. 2.
    Ballon D, Watts R, Dyke JP, et al. (2004) Imaging therapeutic response in human bone marrow using rapid whole-body MRI. Magn Reson Med 52: 1234–38PubMedCrossRefGoogle Scholar
  3. 3.
    Barkhausen J, Quick HH, Lauenstein T, et al. (2001) Whole-body MR imaging in 30 seconds with real-time true FISP and a continuously rolling table platform: feasibility study. Radiology 220: 252–56PubMedGoogle Scholar
  4. 4.
    Baur A, Stabler A, Bartl R, et al. (1997) MRI gadolinium enhancement of bone marrow: age related changes in normal and in diffuse neoplastic infiltration. Skeletal Radiol 26: 414–18PubMedCrossRefGoogle Scholar
  5. 5.
    Bukley DL, Roberts C, Parker GM, et al. (2004) Prostate cancer: evaluation of vascular characteristics with dynamic contrast-enhanced T1-weighted MR imaging: initial experience. Radiology 233: 709–15CrossRefGoogle Scholar
  6. 6.
    Catana C, Wu Y, Judenhofer MS, et al. (2006) Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 47: 1968–76PubMedGoogle Scholar
  7. 7.
    Dao TH, Rahmouni A, Campana F, et al. (1994) Tumor recurrence versus fibrosis in the irradiated breast: differentiation with dynamic gadolinium-enhanced MR imaging. Radiology 187: 751–55Google Scholar
  8. 8.
    Eustace S, Tello R, DeCarvalho V, et al. (1997) A comparison of whole-body turbo short tau inversion recovery MR imaging and planar technetium 99m methylene diphosphonate scintigraphy in the evaluation of patients with suspected skeletal metastases. Am J Roentgenol 169: 1655–61Google Scholar
  9. 9.
    Firat A, Agildere M, Gencoglu A, et al. (2006) Value of whole-body turbo short Tau inversion recovery magnetic resonance imaging with panoramic table for detecting bone metastases: comparison with 99MTc-methylene diphosphonate scintigraphy. J Comput Assist Tomogr 30: 151–56CrossRefGoogle Scholar
  10. 10.
    Harisinghani MG, Barentsz J, Hahn PF, et al. (2003) Non-invasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348: 2491–2499PubMedCrossRefGoogle Scholar
  11. 11.
    Hillengass J, Wasser K, Delorme S, et al. (2007) Lumbar bone marrow microcirculation measurements from dynamic contrast-enhanced MRI is a predictor of event-free survival in progressive multiple myeloma. Clin Cancer Res 13: 475–81PubMedCrossRefGoogle Scholar
  12. 12.
    Johnston C, Brennan S, Ford S, et al. (2006) Whole body MR imaging: applications in oncology. Eur J Surg Oncol 32: 239–46PubMedCrossRefGoogle Scholar
  13. 13.
    Kavanagh E, Smith C, Eustace S (2003) Whole-body turbo STIR MR imaging: controversies and avenues for development. Eur Radiol 13: 2196–205PubMedCrossRefGoogle Scholar
  14. 14.
    Kellenberger CJ, Miller SF, Khan M, et al. (2004) Initial experience with FSE STIR whole-body MR imaging for staging lymphoma in children. Eur Radiol 14: 1829–41PubMedCrossRefGoogle Scholar
  15. 15.
    Kruger DG, Riederer SJ, Grimm RC, et al. (2002) Continuously moving table data acquisition method for long FOV contrast-enhanced MRA and whole-body MRI. Magn Reson Med 47: 224–31PubMedCrossRefGoogle Scholar
  16. 16.
    Kuhl CK, Mielcareck P, Klaschik S, et al. (1999) Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 211: 101–10PubMedGoogle Scholar
  17. 17.
    Lauenstein TC, Goehde SC, Herborn CU, et al. (2004) Whole-body MR imaging: evaluation of patients for metastases. Radiology 233: 139–48PubMedCrossRefGoogle Scholar
  18. 18.
    Lauenstein TC, Goehde SC, Treder W, et al. (2002) Three-dimensional volumetric interpolated breath-hold MR imaging for whole-body tumor staging in less than 15 minutes: a feasibility study. Am J Roentgenol 179: 445–49Google Scholar
  19. 19.
    Lauenstein TC, Semelka RC (2006) Emerging techniques: whole-body screening and staging with MRI. J Magn Reson Imaging 24: 489–98PubMedCrossRefGoogle Scholar
  20. 20.
    Lauenstein TC, Semelka RC (2005) Whole-body magnetic resonance imaging. Top Magn Reson Imaging 16: 15–20PubMedCrossRefGoogle Scholar
  21. 21.
    Luciani A, Dao TH, Lapeyre M, et al. (2004) Simultaneous bilateral breast and high-resolution axillary MRI of patients with breast cancer: preliminary results. Am J Roentgenol 182: 1059–67Google Scholar
  22. 22.
    Mack MG, Balzer JO, Straub R, et al. (2002) Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes. Radiology 222: 239–44PubMedCrossRefGoogle Scholar
  23. 23.
    Mentzel HJ, Kentouche K, Sauner D, et al. (2004) Comparison of whole-body STIR-MRI and 99mTc-methylene-diphosphonate scintigraphy in children with suspected multifocal bone lesions. Eur Radiol 14: 2297–302PubMedCrossRefGoogle Scholar
  24. 24.
    Rahmouni A, Divine M, Mathieu D, et al. (1993) MR appearance of multiple myeloma of the spine before and after treatment. Am J Roentgenol 160: 1053–57Google Scholar
  25. 25.
    Rahmouni A, Montazel JL, Divine M, et al. (2003) Bone marrow with diffuse tumor infiltration in patients with lymphoproliferative diseases: dynamic gadolinium-enhanced MR imaging. Radiology 229: 710–17PubMedCrossRefGoogle Scholar
  26. 26.
    Roemer PB, Edelstein WA, Hayes CE, et al. (1990) The NMR phased array. Magn Reson Med 16: 192–225PubMedCrossRefGoogle Scholar
  27. 27.
    Schmidt GP, Baur-Melnyk A, Herzog P, et al. (2005) High-resolution whole-body MRI tumor staging with the use of parallel imaging versus dual-modality PET-CT: experience on a 32-channel system. Invest Radiol 40: 743–53PubMedCrossRefGoogle Scholar
  28. 28.
    Schmidt GP, Haug AR, Schoenberg SO, Reiser MF (2006) Whole-body MRI and PET-CT in the management of cancer patients. Eur Radiol 16: 1216–25PubMedCrossRefGoogle Scholar
  29. 29.
    Schmidt GP, Schoenberg SO, Reiser MF, Baur-Melnyk A (2005) Whole-body MR imaging of bone marrow. Eur J Radiol 55: 33–40PubMedCrossRefGoogle Scholar
  30. 30.
    Sorgho-Lougue LC, Luciani A, Kobeiter H, et al. (2006) Adenocarcinomas of unknown primary (ACUP) of the mediastinum mimicking lymphoma: CT findings at diagnosis and follow-up. Eur J Radiol 59: 42–48PubMedCrossRefGoogle Scholar
  31. 31.
    Takahara T, Imai Y, Yamashita T, et al. (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high-resolution 3D display. Radiat Med 22: 275–82PubMedGoogle Scholar
  32. 32.
    Vande Berg BC, Lecouvet FE, Michaux L, et al. (1996) Stage I multiple myeloma: value of MR imaging of the bone marrow in the determination of prognosis. Radiology 201: 243–46Google Scholar
  33. 33.
    Van der Woude HJ, Bloem JL, Verstraete KL, et al. (1995) Osteosarcoma and Ewing’s sarcoma after neoadjuvant chemotherapy: value of dynamic MR imaging in detecting viable tumor before surgery. Am J Roentgenol 165: 593–98Google Scholar
  34. 34.
    Walker R, Barlogie B, Haessler J, et al. (2007) Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J Clin Oncol [Epub ahead of print as 10.1200/JCO.2006.08.5803]Google Scholar
  35. 35.
    Walker R, Kessar P, Blanchard R, et al. (2000) Turbo STIR MRI as a whole-body screening tool for metastases in patients with breast carcinoma: preliminary clinical experience. J Magn Reson Imaging 11: 343–50PubMedCrossRefGoogle Scholar
  36. 36.
    Yasumoto M, Nonomura Y, Yoshimura R, et al. (2002) MR detection of iliac bone marrow involvement by malignant lymphoma with various MR sequences including diffusion-weighted echo-planar imaging. Skeletal Radiol 31: 263–69PubMedCrossRefGoogle Scholar

Copyright information

© Springer Verlag France 2007

Authors and Affiliations

  • C. Lin
    • 1
  • A. Luciani
    • 1
  • C. Haioun
    • 2
  • F. Pigneur
    • 1
  • J. -F. Deux
    • 1
  • P. Zerbib
    • 1
  • A. Vignaud
    • 3
  • R. Raymond
    • 1
  • H. Kobeiter
    • 1
  • E. Itti
    • 4
  • A. Rahmouni
    • 1
  1. 1.Service d’Imagerie médicaleCHU Henri-MondorCréteil CedexFrance
  2. 2.Service d’Hématologie cliniqueCHU Henri-MondorCréteil CedexFrance
  3. 3.Siemens FranceSaint-Denis Cedex 02France
  4. 4.Service de Médecine nucléaireCHU Henri-MondorCréteil CedexFrance

Personalised recommendations