Oncologie

, Volume 9, Issue 6, pp 451–457 | Cite as

Imagerie fonctionnelle et métabolique en radiothérapie

  • E. Touboul
  • F. Huguet
  • O. -M. Cojocariu
  • A. Toledano
  • F. Deluen
  • S. Le Nagat
  • M. Rahmoun
  • J. -N. Foulquier
Original

Résumé

Ces 15 dernières années ont vu le développement de la radiothérapie externe conformationnelle tridimensionnelle (RTC-3D) avec ou sans modulation d’intensité du faisceau d’irradiation, asservie ou non à la respiration et guidée par l’image. Cependant, l’un des prérequis fondamentaux pour effectuer une RTC-3D est de définin avec précision un volume tumoral macroscopique (VTM), un volume cible anatomoclinique ou microscopique (VCA) et un volume cible prévisionnel (VCP) prenant en compte les contraintes techniques de traitement. Bien que la simulation virtuelle par tomodensitométrie (TDM), malade en position de traitement, reste un standard pour l’acquisition des volumes cibles, l’imagerie fonctionnelle et métabolique apporte des informations complémentaires qui devraient contribuer à l’amélioration de la qualité de la RT. Elle comprend la tomographie par émission de positons (TEP), la tomographie par émission monophotonique (TESP), la spectroscopie de résonance magnétique (SRM) et l’IRM fonctionnelle (IRMf). De plus, ces techniques d’imagerie peuvent étre utilisées, à la fois, comme une aide décisionnelle pour la stratégie thérapeutique, comme un facteur prédictif de la réponse tumorale à la RT et comme un moyen d’évaluation de la réponse tumorale après RT.

Mots clés

Radiothérapie Imagerie fonctionnelle et métabolique Tomographie par émission de positons Imagerie par résonance magnétique 

Functional and metabolic imaging in radiotherapy

Abstract

These past fifteen years have seen major developments in three-dimensional conformal radiotherapy (3D-CRT), with and without intensity-modulated, respiratorygated, or image-guided techniques. However, one of the fundamental prerequisites for 3D-CRT is the determination of gross tumour volume (GTV), clinical target volume (CTV), and planning target volume (PTV), always taking into account the limitations of the radiotherapy used. Although computed tomography (CT) in the treatment position remains the gold standard in radiotherapy planning, functional imaging — including positron emission topography (PET)/CT imaging, single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS) and functional magnetic resonance imaging (f MRI) — provides complementary data and may contribute to improving treatment quality. Furthermore, functional imaging can be used as an aid in developing treatment strategy, as a predictive factor in tumour response, and as a tool to evaluate tumour response after RT.

Keywords

Radiotherapy Functional imaging Positron emission tomography Magnetic resonance imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Allal AS, Slosman DO, Kebdani T, et al. (2004) Prediction of outcome in head-and-neck cancer patients using the standardized uptake value of 2-[18F] fluoro-2-deoxy-D-glucose. Int J Radiat Oncol Biol Phys 59: 1295–1300PubMedCrossRefGoogle Scholar
  2. 2.
    Andrade RS, Heron D, Degirmenci B, et al. (2006) Post treatment assessment of response using FDG-PET/CT for patients treated with definitive radiation therapy for head and neck cancers. Int J Radiat Oncol Biol Phys 65: 1315–1322PubMedCrossRefGoogle Scholar
  3. 3.
    Aoyama H, Kamada K, Shirota H, et al. (2004) Integration of functional brain information into stereotactic irradiation treatment planning using magnetoencephalography and magnetic resonance axonography. Int J Radiat Oncol Biol Phys 58: 1177–1183PubMedGoogle Scholar
  4. 4.
    Ashamalla H, Rafla S, Parckh K (2005) The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Int J Radiat Oncol Biol Phys 63: 1016–1023PubMedCrossRefGoogle Scholar
  5. 5.
    Beer AJ, Haubner R, Goebel M, et al. (2005) Biodistribution and pharmacokinetics of the {alpha}3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med 46: 1333–1341PubMedGoogle Scholar
  6. 6.
    Belhocine T, Steinmetz N, Hustinx R, et al. (2002) Increased uptake of the apoplosis-imaging agent (99 m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predctor of tumor response and patients progrosis. Clin Cancer Res 8: 2766–2774PubMedGoogle Scholar
  7. 7.
    Bonniaud G, Isambert A, Baudré A, et al. (2006) Recalage d’images en radiothérapie: considérations pratiques et contrôle de qualité. Cancer/Radiother 10: 222–230CrossRefGoogle Scholar
  8. 8.
    Bradley J, Thorstad WL, Mutic S, et al. (2004) Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 59: 78–86PubMedCrossRefGoogle Scholar
  9. 9.
    Buck AK, Hetzel M, Schirmeister H, et al. (2005) Clinical relevance of imaging proliferation activity in lung nodules. Eur J Nucl Med Mol Imaging 32: 525–533PubMedCrossRefGoogle Scholar
  10. 10.
    Caldwell CB, Mah K, Ung YC, et al. (2001) Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 51: 923–931PubMedCrossRefGoogle Scholar
  11. 11.
    Ciernick IF, Dizendorf E, Baumert BG, et al. (2003) Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 57: 853–863CrossRefGoogle Scholar
  12. 12.
    Cotter SE, Grigsby PW, Siegel BA, et al. (2006) FDG/PET in the evaluation of anal carcinoma. Int J Radiat Oncol Biol Phys 65: 720–725PubMedGoogle Scholar
  13. 13.
    Daisne JF, Duprez T, Weynand B, et al. (2004) Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging and FDG PET and validation with surgical specimen. Radiology 233: 93–100PubMedCrossRefGoogle Scholar
  14. 14.
    Damin DC, Rosito MA, Gus P, et al. (2003) Sentinel lymph node procedure in patients with epidermoid carcinoma of the anal canal: early experience. Dis Colon Rectum 46: 1032–1037PubMedCrossRefGoogle Scholar
  15. 15.
    de Jong IJ, Pruim J, Elsinga PH, et al. (2002) Visualization of prostate cancer with 11C-choline positron emission tomography. Eur Urol 42: 18–23PubMedCrossRefGoogle Scholar
  16. 16.
    Deniaud-Alexandre E, Touboul E, Lerouge D, et al. (2005) Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 63: 1432–1441PubMedCrossRefGoogle Scholar
  17. 17.
    Downey RJ, Akhurst T, Gonen M, et al. (2004) Preoperative F-18 fluorodeoxyglucose-positron emission tomography maximum standardized uptake value predicts survival after lung cancer resection. J Clin Oncol 22: 3255–3260PubMedCrossRefGoogle Scholar
  18. 18.
    Esthapan J, Mutic S, Malyapa RS, et al. (2004) Treatment planning Guidelines regarding the use of CT/PET-guided IMRT for cervical carcinoma with positive paraortic lymph nodes. Int J Radiat Oncol Biol Phys 58: 1289–1297Google Scholar
  19. 19.
    Fox JA, Rengan R, O’Meara W, et al. (2005) Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? Int J Radiat Oncol Biol Phys 62: 70–75PubMedCrossRefGoogle Scholar
  20. 20.
    Grigsby PW, Siegel BA, Dehdashti, F, et al. (2004) Posttherapy [18F] fluorodeoxyglucose positron emission tomography in carcinoma of the cervix: response and outcome. J Clin Oncol 22: 2167–2171PubMedCrossRefGoogle Scholar
  21. 21.
    Grosu AL, Feldmann HJ, Dick S, et al. (2002) Implications of IMT-SPECT for postoperative radiotherapy planning in patients with gliomas. Int J Radiat Oncol Biol Phys 54: 842–854PubMedCrossRefGoogle Scholar
  22. 22.
    Grosu AL, Weber WA, Riedel E, et al. (2005) L (methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys 63: 64–74PubMedCrossRefGoogle Scholar
  23. 23.
    Grosu AL, Weber WA, Franz M, et al. (2005) Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 63: 511–519PubMedCrossRefGoogle Scholar
  24. 24.
    Gross MW, Weber WA, Jürgen Feldmann H, et al. (1998) The value of F-18-fluorodeoxglucose PET for the 3-D radiation treatment planning of malignant gliomas. Int J Radiat Oncol Biol Phys 41: 989–995PubMedCrossRefGoogle Scholar
  25. 25.
    Harisinghani MG, Barentez J, Hahn PF, et al. (2003) Non invasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348: 2491–2499PubMedCrossRefGoogle Scholar
  26. 26.
    Jena R, Price SJ, Baker C, et al. (2005) Diffusion tensor imaging: possible implications for radiotherapy treatment planning of patients with high-grade glioma. Clin Oncol 17: 581–590CrossRefGoogle Scholar
  27. 27.
    Kahn ST, Flowers C, Lechowicz ML, et al. (2006) Value of PET restaging after chemotherapy for non-hodgkin’s lymphoma: implications for consolidation radiotherapy. Int J Radiat Oncol Biol Phys 66: 961–965PubMedGoogle Scholar
  28. 28.
    Konski A, Doss M, Milestone B, et al. (2005) The integration of 18-fluorodeoxy-glucose positron emission tomography and endoscopic ultrasound in the treatment-planning process for esophageal carcinoma. Int J Radiat Oncol Biol Phys 61: 1123–1128PubMedCrossRefGoogle Scholar
  29. 29.
    Kostakoglu L, Goldsmith SJ, Leonard JP, et al. (2006) FDG-PET after 1 cycle of therapy predicts outcome in diffuse large cell lymphoma and classic hodgkin disease. Cancer 107: 2678–2687PubMedCrossRefGoogle Scholar
  30. 30.
    Lamoreaux WT, Grigsby PW, Dehdashti F, et al. (2005) FDG-PET evaluation of vaginal carcinoma. Int J Radiat Oncol Biol Phys 62: 733–737PubMedCrossRefGoogle Scholar
  31. 31.
    Lassau N, Lamuraglia M, Leclerc J, et al. (2004) Functional and early evaluation of treatment in oncology: interest of ultrasonographic contrast agents. J Radiol 85: 704–712PubMedGoogle Scholar
  32. 32.
    Lavely WC, Delbeke D, Greer JP, et al. (2003) FDG PET in the follow-up management of patients with newly diagnosed hodgkin and non hodgkin lymphoma after first-line chemotherapy. Int J Radiat Oncol Biol Phys 2: 307–315CrossRefGoogle Scholar
  33. 33.
    Lee YK, Cook G, Flower MA, et al. (2004) Addition of 18F-FDG-PET scans to radiotherapy planning of thoracic lymphoma. Radiother Oncol 73: 277–283PubMedCrossRefGoogle Scholar
  34. 34.
    Mac Manus MP, Hicks RJ, Ball DL, et al. (2001) F-18-fluoro-deoxy-glucose positron emission tomography staging in radical radiotherapy candidates with non-small-cell lung carcinoma. Cancer 92: 886–895PubMedCrossRefGoogle Scholar
  35. 35.
    Mac Manus MP, Hicks RJ, Matthews JP, et al. (2003) Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer. J Clin Oncol 21: 1285–1292PubMedCrossRefGoogle Scholar
  36. 36.
    Mack MG, Balzer JO, Straub R, et al. (2002) Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes. Radiology 222: 239–244PubMedCrossRefGoogle Scholar
  37. 37.
    Mah K, Caldwell CB, Ung YC, et al. (2002) The impact of 18FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 52: 339–350PubMedCrossRefGoogle Scholar
  38. 38.
    Moureau-Zabotto L, Touboul E, Lerouge D, et al. (2005) Impact of CT and 18F-deoxyglucose positron emission tomography image fusion for conformal radiotherapy in esophageal carcinoma. Int J Radiat Oncol Biol Phys 63: 340–345PubMedCrossRefGoogle Scholar
  39. 39.
    Nestle U, Walter K, Schmidt S, et al. (1999) 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 44: 593–597PubMedCrossRefGoogle Scholar
  40. 40.
    Nishioka T, Shiga T, Shirato H, et al. (2002) Image fusion between 18FDG-PET and MRI/CT for radiotherapy planning of oropharyngeal and naso-pharynheal carcinomas. Int J Radiat Oncol Biol Phys 53: 1061–1067CrossRefGoogle Scholar
  41. 41.
    Paulino AC, Koshy M, Howell R, et al. (2005) Comparison of CT- and FDG-PET defined gross tumor volume in intensity-modulated radiotherapy for head- and neck cancer. Int. J Radiat Oncol Biol Phys 61: 1385–1392PubMedCrossRefGoogle Scholar
  42. 42.
    Piert M, Machulla HJ, Puchio M, et al. (2005) Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med 46: 106–113PubMedGoogle Scholar
  43. 43.
    Pirzkall A, Li X, Oh J, et al. (2004) 3D MRSI for resected high grade gliomas before RT: tumor extent according to metabolic activity in relation to MRI. Int J Radiat Oncol Biol Phys 59: 126–137PubMedCrossRefGoogle Scholar
  44. 44.
    Pouliot J, Kim Y, Lessard E, et al. (2004) Inverse planning for HDR prostate brachytherapy used to boost dominant intraprostatic lesions defined by magnetic resonance spectroscopy imaging. Int J Radiat Oncol Biol Phys 59: 1196–1207PubMedCrossRefGoogle Scholar
  45. 45.
    Sasaki R, Komaki R, Macapinlac H, et al. (2005) [18F] fluorodeoxyglucose uptake by positron emission tomography predicts outcome of non-small-cell lung cancer. J Clin Oncol 23: 1136–1143PubMedCrossRefGoogle Scholar
  46. 46.
    Schöder H, Noy A, Gönen M, et al. (2005) Intensity of 18 fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-hodgkin’s lymphoma. J Clin Oncol 21: 4643–4651CrossRefGoogle Scholar
  47. 47.
    Senan S, Chapet O, Lagerward FJ, Ten Haken RK (2004) Defining target volumes for non-small-cell lung carcinoma. Semin Radiat Oncol 14: 308–3014PubMedCrossRefGoogle Scholar
  48. 48.
    (2003) Standards, Options et Recommandations 2002 pour l’utilisation de la tomographie par émission de positons au [18F]-FDG (TEP-FDG) en cancérologie (rapport intégral). Bull. Cancer 90 (numéro spécial): 1s–109sGoogle Scholar
  49. 49.
    Song Y, Kim JH, Ryu JS, et al. (2005) FDG-PET in the prediction of pathologic response after neoadjuvant chemoradiotherapy in locally advanced resectable esophageal cancer. Int J Radiat Oncol Biol Phys 63: 1053–1059PubMedCrossRefGoogle Scholar
  50. 50.
    Tsai CS, Chang TC, Lai CH, et al. (2004) Preliminary report of using FDG-PET to detect extra pelvic lesions in cervical cancer patients with enlarged pelvic lymph nodes on MRI/CT. Int J Radiat Oncol Biol Phys 58: 1506–1512PubMedCrossRefGoogle Scholar
  51. 51.
    Vanuytsel LJ, Vansteenkiste JF, Stroobants SG, et al. (2000) The impact of 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 55: 317–324PubMedCrossRefGoogle Scholar
  52. 52.
    Vriez O, Haustermans K, de Wever W, et al. (2004) Is there a role for FDG-PET in radiotherapy planning in esophageal carcinoma? Radiother Oncol 73: 269–275CrossRefGoogle Scholar

Copyright information

© Springer Verlag France 2007

Authors and Affiliations

  • E. Touboul
    • 1
    • 3
  • F. Huguet
    • 1
    • 3
  • O. -M. Cojocariu
    • 1
    • 3
  • A. Toledano
    • 1
    • 3
  • F. Deluen
    • 1
    • 3
  • S. Le Nagat
    • 1
    • 3
  • M. Rahmoun
    • 1
    • 3
  • J. -N. Foulquier
    • 1
    • 2
    • 3
  1. 1.Service d’Oncologie-Radiothérapie, hôpital TenonAPHPParisFrance
  2. 2.Unité de Physique Médicale, service d’Oncologie-Radiothérapie, hôpital TenonAPHPParisFrance
  3. 3.GHU-Estuniversité Pierre-et-Marie-Curie-Paris-VIParisFrance

Personalised recommendations