Oncologie

, Volume 9, Issue 2, pp 88–96

Biologie moléculaire des sarcomes des tissus mous

Article

Résumé

Les sarcomes des tissus mous (STM) regroupent des tumeurs de différentes origines histologiques, ayant une agressivité variable et dont le diagnostic, déterminant sur l’efficacité de la prise en charge du patient, reste parfois délicat à établir. Hétérogènes également sur le plan génétique, ces tumeurs peuvent être regroupées selon la compréhension que nous avons de leur génétique: environ 40 % des sarcomes sont caractérisés par une altération spécifique, translocation ou mutation. Les 60 % restant ne présentent pas de remaniements spécifiques. Dans ce groupe nous pouvons distinguer d’une part, environ 20 % des sarcomes indifférenciés qui présentent une génétique simple très similaire à celle observée dans les liposarcomes bien différenciés; et, d’autre part, les leiomyosarcomes, rhabdomyosarcomes pléomorphes, liposarcomes pléomorphes et les sarcomes pléomorphes indifférenciés ou histocytofibromes malins (MFH) notamment, qui sont génétiquement très instables et pour lesquels aucun remaniement spécifique n’a pu être mis en évidence. L’ensemble de ces caractérisations génétiques font maintenant partie, grâce au développement des technologies, du diagnostic moléculaire des sarcomes des tissus mous.

Mots clés

Sarcome biologie moléculaire Translocation Remaniement Diagnostic 

Molecular biology of soft tissue sarcoma

Abstract

Soft tissue sarcoma includes tumours of various histological origins, with variable aggressiveness, and whose diagnosis, which determines treatment effectiveness, sometimes remains difficult to establish. Heterogeneous on the genetic level, these tumours can be classified according to our understanding of their molecular genetics: approximately 40% of sarcomas are characterized by a specific translocation or mutation. The remaining 60% have no specific modifications. In this group, approximately 20% are undifferentiated sarcomas with very simple genetics similar to differentiated lpiposarcomas, while leiomyosarcomas, pleomorphic rhabdomyosarcomas, pleomorphic liposarcomas, undifferentiated pleomorphic sarcomas, and, in particular, malignant fibrous histocytomas (MFH) are genetically very unstable, no specific rearrangement having been identified. Thanks to a number of technological advances, all of these genetic characteristics play a role in the molecular diagnosis of soft tissue sarcoma.

Keywords

Sarcoma Molecular biology Translocation Rearrangement Diagnosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Antonescu CR (2006) The role of genetic testing in soft tissue sarcoma. Histopathology 48: 13–21PubMedCrossRefGoogle Scholar
  2. 2.
    Chibon F, Mairal A, Freneaux P, et al. (2000) The RB1 gene is the target of chromosome 13 deletions in malignant fibrous histiocytoma. Cancer Res 60: 6339–6345PubMedGoogle Scholar
  3. 3.
    Chibon F, Mariani O, Derre J, et al. (2002) A subgroup of malignant fibrous histocytomas is associated with genetic changes similar to those of well-differentiated liposarcomas. Cancer Genet Cytogenet 139: 24–29PubMedCrossRefGoogle Scholar
  4. 4.
    Chibon F, Mariani O, Mairal A, et al. (2003) The use of clustering software for the classification of comparative genomic hybridization data, an analysis of 109 malignant fibrous histiocytomas. Cancer Genet Cytogenet 141: 75–78PubMedCrossRefGoogle Scholar
  5. 5.
    Chibon F, Mariani O, Derre J, et al. (2004) ASK1 (MAP3K5) as a potential therapeutic target in malignant fibrous histocytomas with 12q14-q15 and 6q23 amplifications. Genes Chromosomes Cancer 40: 32–37PubMedCrossRefGoogle Scholar
  6. 6.
    Coindre JM, Mariani O, Chibon F, et al. (2003) Most malignant fibrous histocytomas developed in retroperitoneum are dedifferentiated liposarcomas: a review of 25 cases initially diagnosed as malignant fibrous histocytoma. Mod Pathol 16: 256–262PubMedCrossRefGoogle Scholar
  7. 7.
    Crozat A, Aman P, Mandahl N, et al. (1993) Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 363: 640–644PubMedCrossRefGoogle Scholar
  8. 8.
    Cummins JM, Velculescu VE (2006) Implication of micro-RNA profiling for cancer diagnosis. Oncogene 25: 6220–6227PubMedCrossRefGoogle Scholar
  9. 9.
    Delattre O, Zucman J, Melot T, et al. (1994) The Ewing family of tumors-a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med 331: 294–299PubMedCrossRefGoogle Scholar
  10. 10.
    Derre J, Lagace R, Nicolas A, et al. (2001) Leiomyosarcomas and most malignant fibrous histiocytomas share very similar comparative genomic hybridization imbalances: an analysis of a series of 27 leiomyosarcomas. Lab Invest 81: 211–215PubMedGoogle Scholar
  11. 11.
    Galili N, Davis RJ, Fredericks WJ, et al. (1993) Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 5: 230–235PubMedCrossRefGoogle Scholar
  12. 12.
    Heidenblad M, Hallor KH, Staaf, et al. (2006) Genomic profiling of bone and soft tissue tumors with supernumerary ring chromosomes using tiling resolution bacterial artificial chromosome microarrays. Oncogene 25: 7106–7116PubMedCrossRefGoogle Scholar
  13. 13.
    Heinrich MC, Corless CL, Demetri GD, et al. (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21: 4342–4349PubMedCrossRefGoogle Scholar
  14. 14.
    Hirota S, Isozaki K, Moriyama Y, et al. (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279: 577–580PubMedCrossRefGoogle Scholar
  15. 15.
    Idbaih A, Coindre JM, Derre J, et al. (2005) Myxoid malignant fibrous histiocytoma and pleomorphic liposarcoma share very similar genomic imbalances. Lab Invest 85: 176–181PubMedCrossRefGoogle Scholar
  16. 16.
    Joensuu H, Roberts PJ, Sarlomo-Rikala, et al. (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344: 1052–1056PubMedCrossRefGoogle Scholar
  17. 17.
    Kallioniemi A, Kallioniemi OP, Sudar D, et al. (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258: 818–821PubMedCrossRefGoogle Scholar
  18. 18.
    Knezevich SR, Garnett MJ, Pysher TJ, et al. (1998) ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res 58: 5046–5048PubMedGoogle Scholar
  19. 19.
    Larramendy ML, Kaur S, Svarvar C, et al. (2006) Gene copy number profiling of soft-tissue leiomyosarcomas by array-comparative genomic hybridization. Cancer Genet Cytogenet 169: 94–101PubMedCrossRefGoogle Scholar
  20. 20.
    Mairal A, Terrier P, Chibon F, et al. (1999) Loss of chromosome 13 is the most frequent genomic imbalance in malignant fibrous histiocytomas. A comparative genomic hybridization analysis of a series of 30 cases. Cancer Genet Cytogenet 111: 134–138PubMedCrossRefGoogle Scholar
  21. 21.
    Mertens F, Fletcher CD, Dal CP, et al. (1998) Cytogenetic analysis of 46 pleomorphic soft tissue sarcomas and correlation with morphologic and clinical features: a report of the CHAMP Study Group. Chromosomes and MorPhology. Genes Chromosomes Cancer 22: 16–25PubMedCrossRefGoogle Scholar
  22. 22.
    O’Brien KP, Seroussi E, Dal CP, et al. (1998) Various regions within the alphahelical domain of the COL1A1 gene are fused to the second exon of the PDGFB gene in dermatofibrosarcomas and giant-cell fibroblastomas. Genes Chromosomes Cancer 23: 187–193PubMedCrossRefGoogle Scholar
  23. 23.
    Parente F, Grosgeorge J, Coindre JM, et al. (1999) Comparative genomic hybridization reveals novel chromosome deletions in 90 primary soft tissue tumors. Cancer Genet Cytogenet 115: 89–95PubMedCrossRefGoogle Scholar
  24. 24.
    Pedeutour F, Suijkerbuijk RF, Forus A, et al. (1994) Complex composition and co-amplification of SAS and MDM2 in ring and giant rod marker chromosomes in well-differentiated liposarcoma. Genes Chromosomes Cancer 10: 85–94PubMedCrossRefGoogle Scholar
  25. 25.
    Pedeutour F, Simon MP, Minoletti F, et al. (1996) Translocation, t(17;22)(q22;q13), in dermatofibrosarcoma protuberans: a new tumor-associated chromosome rearrangement. Cytogenet Cell Genet 72: 171–174PubMedGoogle Scholar
  26. 26.
    Pedeutour F, Forus A, Coindre JM, et al. (1999) Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors. Genes Chromosomes Cancer 24: 30–41PubMedCrossRefGoogle Scholar
  27. 27.
    Rabbitts TH, Forster A, Larson R, et al. (1993) Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet 4: 175–180PubMedCrossRefGoogle Scholar
  28. 28.
    Shio S, Takashi I, Keisuke I, et al. (2006) The value of MDM2 and CDK4 amplification levels using real-time polymerase chain reaction for the differential diagnosis of liposarcomas and their histologic mimickers. Hum Pathol 37: 1123–1129CrossRefGoogle Scholar
  29. 29.
    Thaete C, Brett D, Monaghan P, et al. (1999) Functional domains of the SYT and SYT-SSX synovial sarcoma translocation proteins and co-localization with the SNF protein BRM in the nucleus. Hum Mol Genet 8: 585–591PubMedCrossRefGoogle Scholar
  30. 30.
    Turc-Carel C, Limon J, Dal CP, et al. (1986) Cytogenetic studies of adipose tissue tumors. II. Recurrent reciprocal translocation t(12;16)(q13;p11) in myxoid liposarcomas. Cancer Genet Cytogenet 23: 291–299PubMedCrossRefGoogle Scholar
  31. 31.
    Van Oosterom AT, Judson I, Verweij J, et al. (2001) Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet 358: 1421–1423PubMedCrossRefGoogle Scholar
  32. 32.
    Versteege I, Sevenet N, Lange J, et al. (1998) Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394: 203–206PubMedCrossRefGoogle Scholar

Copyright information

© Springer Verlag France 2007

Authors and Affiliations

  1. 1.Département de pathologieinstitut BergoniéBordeauxFrance
  2. 2.Pathologie moléculaire des cancers, U509institut CurieParisFrance

Personalised recommendations