, Volume 53, Issue 6, pp 433–445 | Cite as

The correlation among molecular phylogenetics, morphological data, and growth temperature of the genus Emericella, and a new species

  • Tetsuhiro Matsuzawa
  • Reiko Tanaka
  • Yoshikazu Horie
  • Yan Hui
  • Paride Abliz
  • Takashi Yaguchi
Full Paper


The species of the genus Emericella have been classified and identified on the basis of morphological features. However, the phylogenetic relationships in this genus have not been investigated. To clarify the relationships according to molecular phylogenetics, morphological characteristics, and growth temperature regimens in Emericella, multilocus sequencing analysis based on recent Aspergillus taxonomy was carried out. Various characteristic species formed individual clades, and maximum growth temperature reflected the phylogenetics. Emericella species exhibit various ascospore characteristics, although some species do not have distinct ascospore ornamentation. Species that have smooth-walled ascospores with two equatorial crests are polyphyletic. Here, Emericella pachycristata is described and illustrated as a new species. Its ascospores are similar to those of E. nidulans. These species produce smooth-walled ascospores, but the equatorial crests of E. pachycristata are thicker than those of E. nidulans. On the phylogenetic trees, E. pachycristata is closely related to E. rugulosa, which produces ascospores with ribbed convex surfaces. Thus, E. pachycristata is considered to be a new species both morphologically and phylogenetically.


Emericella pachycristata Morphological features New taxon Physiological characteristics 



This work was supported in part by the National Bioresource Project “Pathogenic microbes in Japan” ( and a Grant-in-Aid for Scientific Research (B-18405005) from the Japan Society for the Promotion of Science.


  1. Balajee SA, Gribskov JL, Hanley E, Nickle D, Marr KA (2005) Aspergillus lentulus sp. nov., a new sibling species of A. fumigatus. Eukaryot Cell 4:625–632PubMedCrossRefGoogle Scholar
  2. Balajee SA, Houbraken J, Verweij PE, Hong SB, Yaghuchi T, Varg J, Samson RA (2007) Aspergillus species identification in the clinical setting. Stud Mycol 59:39–46PubMedCrossRefGoogle Scholar
  3. Brown DW, Yu JH, Kelkar HS, Fernandes M, Nesbitt TC, Keller NP, Adams TH, Leonard TJ (1996) Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc Natl Acad Sci USA 93:1418–1422PubMedCrossRefGoogle Scholar
  4. Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556CrossRefGoogle Scholar
  5. Cary JW, Klich MA, Beltz SB (2005) Characterization of aflatoxin-producing fungi outside of Aspergillus section Flavi. Mycologia 97:425–432PubMedCrossRefGoogle Scholar
  6. Christensen M (1978) Two new Aspergillus nidulans group members from Wyoming soils. Mycologia 70:332–342CrossRefGoogle Scholar
  7. De Hoog GS, Guarro J, Gené J, Figueras MJ (2000) Atlas of clinical fungi, 2nd edn. Centraalbureau voor Schimmelcultures, Utrecht, pp 486–488Google Scholar
  8. Dotis J, Panagopoulou P, Filioti J, Winn R, Toptsis C, Panteliadis C, Roilides E (2003) Femoral osteomyelitis due to Aspergillus nidulans in a patient with chronic granulomatous disease. Infection 31:121–124PubMedCrossRefGoogle Scholar
  9. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  10. Fitch WM (1977) On the problem of discovering the most parsimonious tree. Am Nat 111:223–257CrossRefGoogle Scholar
  11. Frisvad JC, Samson RA (2004) Emericella venezuelensis, a new species with stellate ascospores producing sterigmatocystin and aflatoxin B1. Syst Appl Microbiol 27:672–680PubMedCrossRefGoogle Scholar
  12. Frisvad JC, Samson RA, Smedsgaard J (2004) Emericella astellata, a new producer of aflatoxin B1, B2 and sterigmatocystin. Lett Appl Microbiol 38:440–445PubMedCrossRefGoogle Scholar
  13. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330PubMedGoogle Scholar
  14. Gugnani HC, Vijayan VK, Tyagi P, Sharma S, Stchigel AM, Guarro J (2004) Onychomycosis due to Emericella quadrilineata. J Clin Microbiol 42:914–916PubMedCrossRefGoogle Scholar
  15. Hong SB, Go SJ, Shin HD, Frisvad JC, Samson RA (2005) Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 97:1316–1329PubMedCrossRefGoogle Scholar
  16. Hong SB, Shin HD, Hong J, Frisvad JC, Nielsen PV, Varga J, Samson RA (2008) New taxa of Neosartorya and Aspergillus in Aspergillus section Fumigati. Antonie Van Leeuwenhoek 93:87–98PubMedCrossRefGoogle Scholar
  17. Horie Y (1979) New or interesting Emericella from herbal drugs. Trans Mycol Soc Jpn 20:481–491Google Scholar
  18. Horie Y (1980) Ascospore ornamentation and its application to the taxonomic re-revaluation in Emericella. Trans Mycol Soc Jpn 21:483–493Google Scholar
  19. Horie Y (1996) New and interesting species of Emericella from Chinese soil. Mycoscience 37:323–329CrossRefGoogle Scholar
  20. Horie Y (1998) Emericella appendiculata, a new species from Chinese soil. Mycoscience 39:161–165CrossRefGoogle Scholar
  21. Horie Y (2000) Emericella qinqixianii, a new species from desert soil in China. Mycoscience 41:183–187CrossRefGoogle Scholar
  22. Horre R, Schumacher G, Marklein G, Kromer B, Wardelmann E, Gilges S, De Hoog GS, Wahl G, Schaal KP (2002) Case report. Maxillary sinus infection due to Emericella nidulans. Mycoses 45:402–405PubMedGoogle Scholar
  23. Kato N, Brooks W, Calvo AM (2003) The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Eukaryot Cell 2:1178–1186PubMedCrossRefGoogle Scholar
  24. Keller NP (2006) Aspergillus nidulans: a model for elucidation of Aspergillus fumigatus secondary metabolism. In: Heitman J, Filler SG, Edwards JE Jr, Mitchell AP (eds) Molecular principles of fungal pathogenesis. ASM Press, Washington, DC, pp 235–243Google Scholar
  25. Keller NP, Kantz NJ, Adams TH (1994) Aspergillus nidulans verA is required for production of the mycotoxin sterigmatocystin. Appl Environ Microbiol 60:1444–1450PubMedGoogle Scholar
  26. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  27. Klich M, Mendoza C, Mullaney E, Keller N, Bennett JW (2001) A new sterigmatocystin-producing Emericella variant from agricultural desert soils. Syst Appl Microbiol 24:131–138PubMedCrossRefGoogle Scholar
  28. Kornerup A, Wanscher JH (1978) Methuen handbook of colour, 3rd edn. Methuen, London, p 252Google Scholar
  29. Malmstrom J (1999) Unguisins A and B: new cyclic peptides from the marine-derived fungus Emericella unguis. J Nat Prod 62:787–789PubMedCrossRefGoogle Scholar
  30. Malmstrom J, Ryager A, Anthoni U, Nielsen PH (2002) Unguisin C, a GABA-containing cyclic peptide from the fungus Emericella unguis. Phytochemistry 60:869–872PubMedCrossRefGoogle Scholar
  31. Oh D-C, Kauffman CA, Jensen PR, Fenical W (2007) Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J Nat Prod 70:515–520PubMedCrossRefGoogle Scholar
  32. Peterson SW (2008) Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia 100:205–226PubMedCrossRefGoogle Scholar
  33. Raper KB, Fennell DI (1965) The genus Aspergillus. Williams & Wilkins, Baltimore, pp 491–542Google Scholar
  34. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  35. Samson RA, Varga J, Witiak SM, Geiser DM (2007) The species concept in Aspergillus: recommendations of an international panel. Stud Mycol 59:71–73PubMedCrossRefGoogle Scholar
  36. Stchigel AM, Guarro J (1997) A new species of Emericella from Indian soil. Mycologia 89:937–941CrossRefGoogle Scholar
  37. Stchigel AM, Cano J, Guarro J (1999) A new species of Emericella and a rare morphological variant of E. quadrilineata. Mycol Res 103:1057–1064CrossRefGoogle Scholar
  38. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4b10. Sinauer Associates, SunderlandGoogle Scholar
  39. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  40. Udagawa S, Muroi T (1979) Some interesting species of Ascomycetes from imported spices. Trans Mycol Soc Jpn 20:13–22Google Scholar
  41. Yaguchi T, Horie Y, Tanaka R, Matsuzawa T, Ito J (2007) Molecular phylogenetics of multiple genes on Aspergillus section Fumigati isolated from clinical specimens in Japan. Jpn J Med Mycol 48:37–46CrossRefGoogle Scholar
  42. Zalar P, Frisvad JC, Gunde-Cimerman N, Varga J, Samson RA (2008) Four new species of Emericella from the Mediterranean region of Europe. Mycologia 100:779–795PubMedCrossRefGoogle Scholar

Copyright information

© The Mycological Society of Japan and Springer 2012

Authors and Affiliations

  • Tetsuhiro Matsuzawa
    • 1
  • Reiko Tanaka
    • 1
  • Yoshikazu Horie
    • 1
  • Yan Hui
    • 2
  • Paride Abliz
    • 2
  • Takashi Yaguchi
    • 1
  1. 1.Medical Mycology Research CenterChiba UniversityChibaJapan
  2. 2.Department of DermatologyThe First Hospital of Xinjiang Medical UniversityUrumqiChina

Personalised recommendations