Mycoscience

, Volume 53, Issue 6, pp 427–432 | Cite as

Survival of anaerobic fungus Caecomyces sp. in various preservation methods: a comparative study

  • Ravinder Nagpal
  • Anil Kumar Puniya
  • Jatinder Paul Sehgal
  • Kishan Singh
Full Paper
  • 247 Downloads

Abstract

The present investigation was designed to observe the survival of the anaerobic fungus Caecomyces sp. in various routine preservation methods. Among all the treatments, cryopreservation of fungi at −70 °C with glycerol was found to be most effective for long-term maintenance (more than 90 days) of rumen fungi, followed by dimethyl sulfoxide (DMSO) and ethylene glycol (up to 60 days). In contrast, at −196 °C, DMSO showed maximum survival (more than 90 days), followed by glycerol (up to 90 days) and ethylene glycol (up to 30 days). At 39 °C, maximum survival (up to 30 days) was observed with soft agar and wheat straw; at refrigeration temperature, preservation with Orpin’s media containing straw showed maximum survival (up to 30 days).

Keywords

Anaerobic fungi Cryopreservation Fiber degradation Microbial survival Rumen microflora 

Notes

Acknowledgments

The authors are thankful for the research fellowships and funding provided by National Dairy Research Institute, Karnal, and Indian Council of Agricultural Research, New Delhi, India.

References

  1. Barr DJS (1990) Phylum Chytridiomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 454–466Google Scholar
  2. Bauchop T (1979) Rumen anaerobic fungi of sheep and cattle. Appl Environ Microbiol 38:148–158PubMedGoogle Scholar
  3. Breton A, Bernalier A, Bonnemoy F, Fonty G, Gaillard B, Gouet P (1989) Morphological and metabolic characterization of a new species of strictly anaerobic rumen fungus: Neocallimastix joyonii. FEMS Microbiol Lett 58:309–314CrossRefGoogle Scholar
  4. Chen YC, Tsai SD, Cheng HL, Chien CY, Hu CY, Cheng TY (2007) Caecomyces sympodialis sp. nov., a new rumen fungus isolated from Bos indicus. Mycologia 99:125–130PubMedCrossRefGoogle Scholar
  5. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James TY, Kirk PM, Lucking R, Lumbsch T, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde K, Ironside JE, Koljalg U, Kurtzman CP, Larsson KH, Lichwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schussler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547PubMedCrossRefGoogle Scholar
  6. Ho YW, Barr DJ (1995) Classification of anaerobic gut fungi from herbivores with emphasis on rumen fungi from Malaysia. Mycologia 87:655–677CrossRefGoogle Scholar
  7. Ho YW, Barr DJS, Abdullah N, Jalaludin S, Kudo H (1993a) A new species of Piromyces from the rumen of deer in Malaysia. Mycotaxon 47:285–293Google Scholar
  8. Ho YW, Barr DJS, Abdullah N, Jalaludin S, Kudo H (1993b) Piromyces spiralis, a new species of anaerobic fungi from the rumen of goat. Mycotaxon 48:59–68Google Scholar
  9. James TY, Porter D, Leander CA, Vilgalys R, Longcore JE (2000) Molecular phylogenetics of the Chytridiomycota support the utility of ultrastructural data in chytrid systematics. Can J Bot 78:336–350Google Scholar
  10. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schussler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lucking R, Budel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006a) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature (Lond) 443:818–822CrossRefGoogle Scholar
  11. James TY, Letcher PM, Longcore JE, Mozley-Standridge SE, Porter D, Powell MJ, Griffith GW, Vilgalys R (2006b) Chytridiomycota: 14 clades of flagellated fungi. Mycologia 98:860–871PubMedCrossRefGoogle Scholar
  12. Joblin KN (1981) Isolation, enumeration and maintenance of rumen anaerobic fungi in roll-tubes. Appl Environ Microbiol 42:1119–1122PubMedGoogle Scholar
  13. Lee SS, Choi CK, Ahn BH, Moon YH, Kim CH, Ha JK (2004) In vitro stimulation of rumen microbial fermentation by a rumen anaerobic fungal culture. Anim Feed Sci Technol 115:215–226CrossRefGoogle Scholar
  14. Li J, Heath IB, Bauchop T (1990) Piromyces mae and Piromyces dumbonica, two new species of uniflagellate anaerobic chytridiomycete fungi from the hindgut of the horse and elephant. Can J Bot 68:1021–1033CrossRefGoogle Scholar
  15. Li J, Heath IB, Packer L (1993) The phylogenetic relationships of the anaerobic chytridiomycetous gut fungi (Neocallimasticaceae) and the Chytridiomycota. II. Cladistic analysis of structural data and the description of Neocallimasticales ord. nov. Can J Bot 71:393–407CrossRefGoogle Scholar
  16. Lowe SE, Theodorou MK, Trinci APJ, Hespell RB (1985) Growth of anaerobic rumen fungi on defined and semi-defined media lacking rumen fluid. J Gen Microbiol 131:2225–2229Google Scholar
  17. Nagpal R, Puniya AK, Griffith G, Goel G, Puniya M, Sehgal JP, Singh K (2008) Anaerobic rumen fungi: potential and applications. In: Khachatourians G, Arora DK, Rajendran TP, Srivastava AK (eds) Agriculturally important microorganisms: an international multi-volume annual review series, vol 2. Academic World International, Bhopal, pp 375–393Google Scholar
  18. Nagpal R, Puniya AK, Singh K (2009) In vitro fibrolytic activities of the anaerobic fungus Caecomyces sp., immobilized in alginate beads. J Anim Feed Sci 18:758–768Google Scholar
  19. Nagpal R, Puniya AK, Sehgal JP, Singh K (2010) Influence of bacteria and protozoa from the rumen of buffalo on in vitro activities of anaerobic fungus Caecomyces sp. from the feces of elephant. J Yeast Fungal Res 1(8):152–156Google Scholar
  20. Nagpal R, Puniya AK, Sehgal JP, Singh K (2011) In vitro fibrolytic potential of anaerobic rumen fungi from ruminants and non-ruminant herbivores. Mycoscience 52:31–38CrossRefGoogle Scholar
  21. Orpin CG (1975) Studies on the rumen flagellate Neocallimastix frontalis. J Gen Microbiol 91:249–262PubMedCrossRefGoogle Scholar
  22. Orpin CG, Bountiff L (1978) Zoospore chemotaxis in the rumen phycomycete Neocallimastix frontalis. J Gen Microbiol 104:113–122CrossRefGoogle Scholar
  23. Orpin CG, Joblin KN (1988) The rumen anaerobic fungi. In: Hobson PN (ed) The rumen microbial ecosystem. Elsevier Applied Science, London, pp 129–150Google Scholar
  24. Paul SS, Kamra DN, Sastry VRB, Agarwal N (2004) Effect of administration of an anaerobic gut fungus isolated from wild blue bull to buffaloes on in vivo ruminal fermentation and digestion of nutrients. Anim Feed Sci Technol 115:143–157CrossRefGoogle Scholar
  25. Sakurada M, Tsuzuki Y, Morgavi DP, Tomita Y, Onodera R (1995) Simple method for cryopreservation of an anaerobic rumen fungus using ethylene glycol and rumen fluid. FEMS Microbiol Lett 127:171–174PubMedCrossRefGoogle Scholar
  26. Thareja A, Puniya AK, Goel G, Nagpal R, Sehgal JP, Singh P, Singh K (2006) In vitro degradation of wheat straw by anaerobic fungi from small ruminants. Arch Anim Nutr 60:412–417PubMedCrossRefGoogle Scholar
  27. Tripathi VK, Sehgal JP, Puniya AK, Singh K (2007a) Hydrolytic activities of anaerobic fungi from wild blue bull (Boselaphus tragocamelus). Anaerobe 13:36–39PubMedCrossRefGoogle Scholar
  28. Tripathi VK, Sehgal JP, Puniya AK, Singh K (2007b) Effect of administration of anaerobic fungi isolated from cattle and wild blue bull (Boselaphus tragocamelus) on growth rate and fibre utilization in buffalo calves. Arch Anim Nutr 61:416–423PubMedCrossRefGoogle Scholar
  29. Wubah DA, Fuller MS, Akin DE (1991) Isolation of monocentric and polycentric fungi from the rumen and faeces of cow in Georgia. Can J Bot 69:1232–1236CrossRefGoogle Scholar
  30. Yarlett N, Orpin CG, Munn EA, Yarlett NC, Greenwood CA (1986) Hydrogenosome in the rumen fungus Neocallimastix patriciarum. Biochem J 236:729–739PubMedGoogle Scholar

Copyright information

© The Mycological Society of Japan and Springer 2012

Authors and Affiliations

  • Ravinder Nagpal
    • 1
  • Anil Kumar Puniya
    • 1
  • Jatinder Paul Sehgal
    • 2
  • Kishan Singh
    • 1
  1. 1.Dairy Microbiology DivisionNational Dairy Research InstituteKarnalIndia
  2. 2.Dairy Cattle Nutrition DivisionNational Dairy Research InstituteKarnalIndia

Personalised recommendations