, Volume 52, Issue 3, pp 165–173 | Cite as

Interspecific and intraspecific diversity in oak powdery mildews in Europe: coevolution history and adaptation to their hosts

  • Marie-Laure Desprez-LoustauEmail author
  • Nicolas Feau
  • Amira Mougou-Hamdane
  • Cyril Dutech


Quercus has been reported as the genus with the largest number of attacking powdery mildews. In Europe, oak powdery mildew was rarely reported before 1907, when severe outbreaks were observed. These epidemics were attributed to the newly described species Erysiphe alphitoides, presumed to be of exotic origin. After the burst of interest following the emergence of the disease, research on this topic remained very limited. Interest in research was recently reactivated in response to the availability of molecular tools. This review summarizes current knowledge on the diversity of oak powdery mildews in Europe and their possible evolutionary relationships with European oaks. The most striking results are the evidence of cryptic diversity (detection in France of a lineage closely related to Erysiphe quercicola, previously thought to only have an Asian distribution), large host range (similarity of E. alphitoides and E. quercicola with powdery mildews of tropical plants) but also local adaptation to Quercus robur. These recent findings highlight the complexity of the history of oak powdery mildew in Europe and point to the question of host specialization and host jumps in the evolution of powdery mildew fungi.


Erysiphe alphitoides Erysiphe quercicola Host range Local adaptation Phyllactinia roboris 



Nicolas Feau has benefited from a fellowship from INRA, Department of Ecology of Forests, Grasslands and Freshwater Ecosystems, and Amira Mougou-Hamdane from the Tunisian government. Grants from the French Agence Nationale de la Recherche (ANR) for the DRYADE project (Vulnérabilité, Milieux et Climat programme) and from the Ministry of Agriculture (DGFAR) are gratefully acknowledged. We thank two anonymous reviewers for improving the manuscript.


  1. Adam L, Ellwood S, Wilson I, Saenz G, Xiao S, Oliver RP, Turner JG, Somerville S (1999) Comparison of Erysiphe cichoracearum and E. cruciferarum and a survey of 360 Arabidopsis thaliana accessions for resistance to these two powdery mildew pathogens. Mol Plant–Microbe Interact 12:1031–1043PubMedCrossRefGoogle Scholar
  2. Arnaud G, Foex E (1912) Sur la forme parfaite de l’Oïdium du chêne. C R Hebd Seances Acad Sci 154:124Google Scholar
  3. Ayres PG (1976) Natural resistance to oak mildew. Arboric J 3:23–29Google Scholar
  4. Boesewinkel HJ (1980) The identity of mango mildew, Oidium mangiferae. Phytopathol Z 99:126–130CrossRefGoogle Scholar
  5. Braun U (1995) The powdery mildews (Erysiphales) of Europe. Gustav Fisher, JenaGoogle Scholar
  6. Braun U, Takamatsu S (2000) Phylogeny of Erysiphe, Microsphaera, Uncinula (Erysipheae) and Cystotheca, Podosphaera, Sphaerotheca (Cystotheceae) inferred from rDNA ITS sequences—some taxonomic consequences. Schlechtendalia 4:1–33Google Scholar
  7. Braun U, Takamatsu S, Heluta V, Limkaisang S, Divarangkoon R, Cook RTA, Boyle H (2006) Phylogeny and taxonomy of powdery mildew fungi of Erysiphe sect. Uncinula on Carpinus species. Mycol Prog 5:139–153CrossRefGoogle Scholar
  8. Brewer MT, Milgroom MG (2010) Phylogeography and population structure of the grape powdery mildew fungus, Erysiphe necator, from diverse Vitis species. BMC Evol Biol 10:268PubMedCrossRefGoogle Scholar
  9. Bureau E (1908) Effets de l’Oidium quercinum sur différentes espèces de chênes. C R Hebd Seances Acad Sci 147:571–574Google Scholar
  10. Clarke DD, Akhkha A (2002) Population genetics of powdery mildew—natural plant pathosystems. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. The American Phytopathological Society, St. Paul, pp 200–218Google Scholar
  11. Cobb NS, Whitham TG (1993) Herbivore deme formation on individual trees: a test case. Oecologia (Berl) 94:496–502CrossRefGoogle Scholar
  12. Combes C (2001) Ecology and evolution of intimate interactions. Chicago University Press, ChicagoGoogle Scholar
  13. Cook RTA, Inman AJ, Billings C (1997) Identification of anamorphs of powdery mildews using morphological and host range data. Mycol Res 101:975–1002CrossRefGoogle Scholar
  14. Cunnington JH, Takamatsu S, Lawrie AC, Pascoe IG (2003) Molecular identification of anamorphic powdery mildews (Erysiphales). Australas Plant Pathol 32:421–428CrossRefGoogle Scholar
  15. Délye C, Laigret F, Corio-Costet M-F (1997) RAPD analysis provides insight into the biology and epidemiology of Uncinula necator. Phytopathology 87:670–677PubMedCrossRefGoogle Scholar
  16. Desprez-Loustau M-L, Vitasse Y, Delzon S, Capdevielle X, Marçais B, Kremer A (2010a) Are plant pathogen populations adapted for encounter with their host? A case study of phenological synchrony between oak and an obligate fungal parasite along an altitudinal gradient. J Evol Biol 23:87–97PubMedCrossRefGoogle Scholar
  17. Desprez-Loustau ML, Courtecuisse R, Robin C, Husson C, Moreau Pa, Blancard D, Selosse MA, Lung-Escarmant B, Piou D, Sache I (2010b) Species diversity and drivers of spread of alien fungi (sensu lato) in Europe with a particular focus on France. Biol Invasions 12:157–172CrossRefGoogle Scholar
  18. Dutech C, Enjalbert E, Fournier E, Delmotte F, Barrès B, Carlier J, Tharreau D, Giraud T (2007) Challenges of microsatellite isolation in fungi. Fungal Genet Biol 44:933–949PubMedCrossRefGoogle Scholar
  19. Eichmann R, Hückelhoven R (2008) Accommodation of powdery mildew fungi in intact plant cells. J Plant Physiol 165:5–18PubMedCrossRefGoogle Scholar
  20. Farr DF, Rossman AY (2010) Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved 1 October 2010, from
  21. Foex ME (1941) L’invasion des chênes d’Europe par le blanc ou Oïdium. Rev Eaux Forêts 79:338–349Google Scholar
  22. Gachet H (1832) Note sur quelques espèces et une variété inédite de champignons. Actes Soc Linn Bordeaux 29 :15 sept 1832Google Scholar
  23. Gadoury DM, Pearson RC (1988) Initiation, development, dispersal, and survival of cleistothecia of Uncinula necator in New York vineyards. Phytopathology 78:1413–1421CrossRefGoogle Scholar
  24. Gillot D (1909) Le blanc du chêne. Rev Sci Limousin 193:1–4Google Scholar
  25. Giraud T, Enjalbert J, Fournier E, Dutech C, Delmotte F (2008) Population genetics of fungal diseases of plants. Parasite 15:449–454PubMedGoogle Scholar
  26. Griffon E, Maublanc A (1908) Sur le blanc du Chêne. C R Hebd Seances Acad Sci 147:437–439Google Scholar
  27. Griffon E, Maublanc A (1911) Le blanc du chêne en 1910. Bull Trimest Soc Mycol F 27:60–67Google Scholar
  28. Griffon E, Maublanc A (1912) Les Microsphaera des Chênes. Bull Trimest Soc Mycol F 28:88–104Google Scholar
  29. Hariot P (1907) Note sur un oïdium du chêne. Bull Trimest Soc Mycol F 23:157–159Google Scholar
  30. Henricot B, Cook RTA (2007) New report of powdery mildew on wisteria in the UK. New Dis Rep 15.
  31. Hirata T, Takamatsu S (1996) Nucleotide sequence diversity of rDNA internal transcribed spacers extracted from conidia and cleistothecia of several powdery mildew fungi. Mycoscience 37:283–288CrossRefGoogle Scholar
  32. Hirose S, Tanda S, Kiss L, Grigaliunaite B, Havrylenko M, Takamatsu S (2005) Molecular phylogeny and evolution of the maple powdery mildew (Sawadaea, Erysiphaceae) inferred from nuclear rDNA sequences. Mycol Res 109:912–922PubMedCrossRefGoogle Scholar
  33. Hoeksema J, Forde S (2008) A meta-analysis of factors affecting local adaptation between interacting species. Am Nat 171:275–290PubMedCrossRefGoogle Scholar
  34. Jones DR, Baker RHA (2007) Introductions of non-native plant pathogens into Great Britain, 1970–2004. Plant Pathol 56:891–910CrossRefGoogle Scholar
  35. Kreisel H, Scholler M (1994) Chronology of phytoparasitic fungi introduced to Germany and adjacent countries. Bot Acta 107:387–392Google Scholar
  36. Laine AL (2005) Spatial scale of local adaptation in a plant–pathogen metapopulation. J Evol Biol 18:930–938PubMedCrossRefGoogle Scholar
  37. Laine AL (2007) Detecting local adaptation in a natural plant–pathogen metapopulation: a laboratory vs. field transplant approach. J Evol Biol 20:1665–1673PubMedCrossRefGoogle Scholar
  38. Laine AL, Hanski I (2006) Large-scale spatial dynamics of a specialist plant pathogen in a fragmented landscape. J Ecol 94:217–226CrossRefGoogle Scholar
  39. Limkaisang S, Kom-Un S, Luiz Furtado E, Liew WK, Salleh B, Sato Y, Takamatsu S (2005) Molecular phylogenetic and morphological analyses of Oidium heveae, a powdery mildew of rubber tree. Mycoscience 46:220–226CrossRefGoogle Scholar
  40. Limkaisang S, Cunnington JH, Liew KW, Salleh B, Sato Y, Divarangkoon R, Fangfuk W, To-Anun C, Takamatsu S (2006) Molecular phylogenetic analyses reveal a close relationship between powdery mildew fungi on some tropical trees and Erysiphe alphitoides, an oak powdery mildew. Mycoscience 47:327–335CrossRefGoogle Scholar
  41. Macek J (1975a) Three species of oak powdery mildews in Slovenia. Gozdarski Vestnik 33:299–304Google Scholar
  42. Macek J (1975b) Phyllactinia roboris (Gach.) Blum.–Relikt einer erloschenen Eichenmehltauepiphytotie in Jugoslawien (1). Biol Vestn 23(1):41–44Google Scholar
  43. Marçais B, Kavkova M, Desprez-Loustau M-L (2009) Phenotypic variation in phenology of ascospore production between European populations of oak powdery mildew. Ann For Sci 66:814CrossRefGoogle Scholar
  44. McDonald BA, Linde CC (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379PubMedCrossRefGoogle Scholar
  45. Micali C, Göllner K, Humphry M, Consonni C, Panstruga R (2008) The powdery mildew disease of Arabidopsis: a paradigm for the interaction between plants and biotrophic fungi. In: The Arabidopsis book 2008. American Society of Plant Biologists, Rockville, pp 1–19Google Scholar
  46. Milgroom MG, Peever TL (2003) Population biology of plant pathogens: the synthesis of plant disease epidemiology and population genetics. Plant Dis 87:608–617CrossRefGoogle Scholar
  47. Morgan AD, Gandon S, Buckling A (2005) The effect of migration on local adaptation in a coevolving host–parasite system. Nature (Lond) 437:253–256CrossRefGoogle Scholar
  48. Mori Y, Sato Y, Takamatsu S (2000) Evolutionary analysis of the powdery mildew fungi (Erysiphales) using nucleotide sequences of the nuclear ribosomal DNA. Mycologia 92:74–93CrossRefGoogle Scholar
  49. Mougou A (2009) Interaction chêne-oïdium (Erysiphe alphitoïdes): base génétique de la résistance et adaptation du parasite. Ph. D. Thesis, Université Bordeaux 1, BordeauxGoogle Scholar
  50. Mougou A, Dutech C, Desprez-Loustau ML (2008) New insights into the identity and origin of the causal agent of oak powdery mildew in Europe. For Pathol 38:275–287Google Scholar
  51. Mougou-Hamdane A, Giresse X, Dutech C, Desprez-Loustau M-L (2010) Spatial distribution of lineages of oak powdery mildew fungi in France, using quick molecular detection methods. Ann For Sci 67:212CrossRefGoogle Scholar
  52. Nixon KC (2006) Global and neotropical distribution and diversity of oak (genus Quercus) and oak forests. In: Kappelle M (ed) Ecology and conservation of neotropical montane oak forests. Ecological studies, vol 185. Springer, BerlinGoogle Scholar
  53. Palovcikova D, Dancakova H, Matouskova H, Junaskova J, Jankovsky (2009) Powdery mildew on woody plants in the Czech republic. SDU Fac For J Ser A 206–215 (Special Issue, ISSN: 1302-7085)Google Scholar
  54. Parker IM, Gilbert GS (2004) The evolutionary ecology of novel plant–pathogen interactions. Annu Rev Ecol Evol Syst 35:675–700CrossRefGoogle Scholar
  55. Parks R, Carbone I, Murphy JP, Marshall D, Cowger C (2008) Virulence structure of the eastern US wheat powdery mildew population. Plant Dis 92:1074–1082CrossRefGoogle Scholar
  56. Parks R, Carbone I, Murphy JP, Cowger C (2009) Population genetic analysis of an eastern US wheat powdery mildew population reveals geographic subdivision and recent common ancestry with UK and Israeli populations. Phytopathology 99:840–849PubMedCrossRefGoogle Scholar
  57. Raymond J (1924) Périthèces de Microsphaera quercina (Schw.) Burr observés dans le sud-ouest de la France. Rev Pathol Veg Entomol Agric 11:254–258Google Scholar
  58. Raymond J (1927) Le “blanc” du chêne. Ann Epiphyt 13:94–129Google Scholar
  59. Ridout CJ (2009) Profiles in pathogenesis and mutualism: powdery mildews. In: Deising HB (ed) The Mycota, vol 5. Plant relationships, 2nd edn. Springer, Berlin, pp 51–68Google Scholar
  60. Roll-Hansen F (1961) Microsphaera hypophylla Nevodovskij (M. silvatica Vlasov), an oak powdery mildew fungus. Medd Norsk Skogfor 59:41–61Google Scholar
  61. Roslin T, Laine A-L, Gripenberg S (2007) Spatial population structure in an obligate plant pathogen colonizing oak Quercus robur. Funct Ecol 21:1168–1177CrossRefGoogle Scholar
  62. Roy BA (2001) Patterns of association between crucifers and their flower-mimic pathogens: host jumps are more frequent than coevolution or cospeciation. Evolution 55:41–53PubMedGoogle Scholar
  63. Saenz GS, Taylor JW (1999) Phylogeny of the Erysiphales (powdery mildews) inferred from internal transcribed spacer ribosomal sequences. Can J Bot 77:150–168Google Scholar
  64. Salmon ES (1900) A monograph of the Erysiphaceae. Mem Torrey Bot Club 9:1–292Google Scholar
  65. Stukenbrock EH, McDonald BA (2008) The origins of plant pathogens in agro-ecosystems. Annu Rev Phytopathol 46:75–100PubMedCrossRefGoogle Scholar
  66. Takamatsu S (2004) Phylogeny and evolution of the powdery mildew fungi (Erysiphales, Ascomycota) inferred from nuclear ribosomal DNA sequences. Mycoscience 45:147–157CrossRefGoogle Scholar
  67. Takamatsu S, Hirata T, Sato Y (1998) Phylogenetic analysis and predicted secondary structures of the rDNA internal transcribed spacers of the powdery mildew fungi (Erysiphaceae). Mycoscience 39:441–453CrossRefGoogle Scholar
  68. Takamatsu S, Hirata T, Sato Y, Nomura Y (1999) Phylogenetic relationships of Microsphaera and Erysiphe section Erysiphe (powdery mildews) inferred from the rDNA ITS sequences. Mycoscience 40:259–268CrossRefGoogle Scholar
  69. Takamatsu S, Sato Y, Mimuro G, Kom-un S (2003) Erysiphe wadae: a new species of Erysiphe sect. Uncinula on Japanese beech. Mycoscience 44:165–171Google Scholar
  70. Takamatsu S, Bolay A, Limkaisang S, Kom-Un S, To-Anun C (2006) Identity of a powdery mildew fungus occurring on Paeonia and its relationship with Erysiphe hypophylla on oak. Mycoscience 47:367–373CrossRefGoogle Scholar
  71. Takamatsu S, Braun U, Limkaisang S, Kom-Un S, Sato Y, Cunnington JH (2007) Phylogeny and taxonomy of the oak powdery mildew Erysiphe alphitoides sensu lato. Mycol Res 111:809–826PubMedCrossRefGoogle Scholar
  72. Takamatsu S, Inagaki M, Niinomi S, Khodaparast SA, Shin H-D, Grigaliunaite B, Havrylenko M (2008) Comprehensive molecular phylogenetic analysis and evolution of the genus Phyllactinia (Ascomycota: Erysiphales) and its allied genera. Mycol Res 112:299–315PubMedCrossRefGoogle Scholar
  73. Vági P, Kovács GM, Kiss L (2007) Host range expansion in a powdery mildew fungus (Golovinomyces sp.) infecting Arabidopsis thaliana: Torenia fournieri as a new host. Eur J Plant Pathol 117:89–93CrossRefGoogle Scholar
  74. Viennot-Bourgin G (1949) Les champignons parasites des plantes cultivées. Masson, ParisGoogle Scholar
  75. Viennot-Bourgin G (1966) De quelques Erysiphacees nouvelles ou peu connues. Bull Trimest Soc Mycol Fr 82:190–206Google Scholar
  76. Viennot-Bourgin G (1968) Note sur les Erysiphacées. Bull Trimest Soc Mycol F 84:117–118Google Scholar

Copyright information

© The Mycological Society of Japan and Springer 2010

Authors and Affiliations

  • Marie-Laure Desprez-Loustau
    • 1
    Email author
  • Nicolas Feau
    • 1
  • Amira Mougou-Hamdane
    • 1
  • Cyril Dutech
    • 1
  1. 1.Pathologie forestièreINRA, UMR 1202 BIOGECOCestasFrance

Personalised recommendations