Advertisement

Odontology

pp 1–11 | Cite as

Dynamic microstructural changes in alveolar bone in ligature‐induced experimental periodontitis

  • Ya-Hsin Wu
  • Yuji Taya
  • Ryutaro Kuraji
  • Hiroshi Ito
  • Yuuichi Soeno
  • Yukihiro NumabeEmail author
Original Article

Abstract

Periodontitis is an inflammatory disease that causes bone resorption. This study used a ligature‐induced experimental periodontitis model to observe the kinetic process of microstructural changes in alveolar bone and introduced star volume analysis as a new methodology to assess microstructural changes. Thirty Wistar rats were used. To induce experimental periodontitis, ligatures were placed around the maxillary first molar. Rats were euthanized on days 0, 1, 3, 7, 14, and 28 after ligature placement. In addition to using hematoxylin and eosin staining, tartrate-resistant acid phosphatase (TRAP)/alkaline phosphatase (ALP) double staining, and micro-computed tomography were performed to analyze bone remodeling. From day 0 to day 7 (initiation phase), the model showed predominant inflammation with increased numbers of TRAP-positive cells, while ALP expression decreased. In contrast, from day 14 to day 28 (resolution phase), inflammatory cells and TRAP-positive cells decreased, whereas ALP expression recovered to levels comparable to that on day 0. Regarding microstructure parameters, in the initiation phase, bone volume fraction, bone mineral density, trabecular thickness, and star volume of the trabeculae decreased significantly, whereas trabecular separation and star volume of the marrow space increased significantly, indicating bone resorption. In the resolution phase, microstructure parameters normalized, indicated bone formation. We confirmed dynamic alveolar bone remodeling in ligature-induced periodontitis in rats. Furthermore, we assessed the potential for using star volume analysis as a sensitive new tool to clarify microstructural changes to alveolar bone in this model.

Keywords

Experimental periodontitis Bone microstructure Micro-computed tomography evaluation Bone remodeling Alveolar bone loss 

Notes

Acknowledgements

The authors would like to thank Dr Nobuhito Nango, Chairman of Ratoc System Engineering, for providing helpful comments.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10266_2019_471_MOESM1_ESM.pdf (1.8 mb)
Supplementary material 1 (PDF 1800 kb)

References

  1. 1.
    Khan SA, Kong EF, Meiller TF, Jabra-Rizk MA. Periodontal diseases: bug induced, host promoted. PLoS Pathog. 2015;11(7):e1004952.  https://doi.org/10.1371/journal.ppat.1004952.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bartold PM, Cantley MD, Haynes DR. Mechanisms and control of pathologic bone loss in periodontitis. Periodontol. 2000;2010(53):55–69.  https://doi.org/10.1111/j.1600-0757.2010.00347.CrossRefGoogle Scholar
  3. 3.
    Graves DT, Kang J, Andriankaja O, Wada K, Rossa C Jr. Animal models to study host-bacteria interactions involved in periodontitis. Front Oral Biol. 2012;15:117–32.  https://doi.org/10.1159/000329675.CrossRefPubMedGoogle Scholar
  4. 4.
    Liu L, Li C, Cai X, Xiang J, Cao Z, Dong W. The temporal expression and localization of extracellular matrix metalloproteinase inducer (EMMPRIN) during the development of periodontitis in an animal model. J Periodontal Res. 2010;45(4):541–9.  https://doi.org/10.1111/j.1600-0765.2010.01269.CrossRefPubMedGoogle Scholar
  5. 5.
    De Almeida J, Ervolino E, Bonfietti LH, Novaes VC, Theodoro LH, Fernandes LA, et al. Adjuvant therapy with sodium alendronate for the treatment of experimental periodontitis in rats. J Periodontol. 2015;86(10):1166–75.  https://doi.org/10.1902/jop.2015.150166.CrossRefPubMedGoogle Scholar
  6. 6.
    Samejima Y, Ebisu S, Okada H. Effect of infection with Eikenella corrodens on the progression of ligature-induced periodontitis in rats. J Periodontal Res. 1990;25(5):308–15.CrossRefGoogle Scholar
  7. 7.
    Takayanagi H. Inflammatory bone destruction and osteoimmunology. J Periodontal Res. 2005;40(4):287–93.  https://doi.org/10.1111/j.1600-0765.2005.00814.CrossRefPubMedGoogle Scholar
  8. 8.
    Mountziaris PM, Mikos AG. Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng Part B Rev. 2008;14(2):179–86.  https://doi.org/10.1089/ten.teb.2008.0038.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Souza JA, Rossa C Jr, Garlet GP, Nogueira AV, Cirelli JA. Modulation of host cell signaling pathways as a therapeutic approach in periodontal disease. J Appl Oral Sci. 2012;20(2):128–38.CrossRefGoogle Scholar
  10. 10.
    Okamoto M, Takahashi Y, Komichi S, Ali M, Yoneda N, Ishimoto T, et al. Novel evaluation method of dentin repair by direct pulp capping using high-resolution micro-computed tomography. Clin Oral Investig. 2018;22(8):2879–87.  https://doi.org/10.1007/s00784-018-2374-5.CrossRefPubMedGoogle Scholar
  11. 11.
    Tsutsumi R, Hock C, Bechtold CD, Proulx ST, Bukata SV, Ito H, et al. Differential effects of biologic versus bisphosphonate inhibition of wear debris-induced osteolysis assessed by longitudinal micro-CT. J Orthop Res. 2008;26(10):1340–6.  https://doi.org/10.1002/jor.20620.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bae SH, Ha MH, Choi EY, Choi JI, Choi IS, Kim SJ. Effects of daidzein on alveolar bone loss and internal microstructures of bone in a rat model of experimental periodontitis: a study using micro-computed tomography. J Periodontal Res. 2016;51(2):250–6.  https://doi.org/10.1111/jre.12304.CrossRefPubMedGoogle Scholar
  13. 13.
    Ikuta A, Kumasaka S, Kashima I. Quantitative analysis using the star volume method applied to skeleton patterns extracted with a morphological filter. J Bone Miner Metab. 2000;18(5):271–7.  https://doi.org/10.1007/pl00010641.CrossRefPubMedGoogle Scholar
  14. 14.
    Vesterby A, Gundersen HJ, Melsen F. Star volume of marrow space and trabeculae of the first lumbar vertebra: sampling efficiency and biological variation. Bone. 1989;10(1):7–13.CrossRefGoogle Scholar
  15. 15.
    Wu YH, Kuraji R, Taya Y, Ito H, Numabe Y. Effects of theaflavins on tissue inflammation and bone resorption on experimental periodontitis in rats. J Periodontal Res. 2018;53(6):1009–19.  https://doi.org/10.1111/jre.12600.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hamba H, Nikaido T, Inoue G, Sadr A, Tagami J. Effects of CPP-ACP with sodium fluoride on inhibition of bovine enamel demineralization: a quantitative assessment using micro-computed tomography. J Dent. 2011;39(6):405–13.  https://doi.org/10.1016/j.jdent.2011.03.005.CrossRefPubMedGoogle Scholar
  17. 17.
    Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010;25(7):1468–86.  https://doi.org/10.1002/jbmr.141.CrossRefGoogle Scholar
  18. 18.
    Vesterby A. Star volume of marrow space and trabeculae in iliac crest: sampling procedure and correlation to star volume of first lumbar vertebra. Bone. 1990;11(3):149–55.CrossRefGoogle Scholar
  19. 19.
    Oliveira GJ, Paula LG, Souza JA, Spin-Neto R, Stavropoulos A, Marcantonio RA. Effect of avocado/soybean unsaponifiables on ligature-induced bone loss and bone repair after ligature removal in rats. J Periodontal Res. 2016;51(3):332–41.  https://doi.org/10.1111/jre.12312.CrossRefPubMedGoogle Scholar
  20. 20.
    Golub EE, Harrison G, Taylor AG, Camper S, Shapiro IM. The role of alkaline phosphatase in cartilage mineralization. Bone Miner. 1992;17(2):273–8.CrossRefGoogle Scholar
  21. 21.
    Groeneveld MC, Everts V, Beertsen W. Alkaline phosphatase activity in the periodontal ligament and gingiva of the rat molar: its relation to cementum formation. J Dent Res. 1995;74(7):1374–81.  https://doi.org/10.1177/00220345950740070901.CrossRefPubMedGoogle Scholar
  22. 22.
    Rovin S, Costich ER, Gordon HA. The influence of bacteria and irritation in the initiation of periodontal disease in germfree and conventional rats. J Periodontal Res. 1966;1(3):193–204.CrossRefGoogle Scholar
  23. 23.
    Mori T, Miyamoto T, Yoshida H, Asakawa M, Kawasumi M, Kobayashi T, et al. IL-1beta and TNFalpha-initiated IL-6-STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. Int Immunol. 2011;23(11):701–12.  https://doi.org/10.1093/intimm/dxr077.CrossRefPubMedGoogle Scholar
  24. 24.
    Bakker AD, Kulkarni RN, Klein-Nulend J, Lems WF. IL-6 alters osteocyte signaling toward osteoblasts but not osteoclasts. J Dent Res. 2014;93(4):394–9.  https://doi.org/10.1177/0022034514522485.CrossRefPubMedGoogle Scholar
  25. 25.
    Nakamura Y, Noda K, Shimpo S, Oikawa T, Kawasaki K, Hirashita A. Phosphatidylinositol-dependent bond between alkaline phosphatase and collagen fibers in the periodontal ligament of rat molars. Histochem Cell Biol. 2004;121(1):39–45.  https://doi.org/10.1007/s00418-003-0599-z.CrossRefPubMedGoogle Scholar
  26. 26.
    Vargas-Sanchez PK, Moro MG, Santos FAD, Anbinder AL, Kreich E, Moraes RM, et al. Agreement, correlation, and kinetics of the alveolar bone-loss measurement methodologies in a ligature-induced periodontitis animal model. J Appl Oral Sci. 2017;25(5):490–7.  https://doi.org/10.1590/1678-7757-2016-0517.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    de Molon RS, Park CH, Jin Q, Sugai J, Cirelli JA. Characterization of ligature-induced experimental periodontitis. Microsc Res Tech. 2018;81(12):1412–21.  https://doi.org/10.1002/jemt.23101.CrossRefPubMedGoogle Scholar
  28. 28.
    Kim JH, Lee DE, Cha JH, Bak EJ, Yoo YJ. Receptor activator of nuclear factor-kappaB ligand and sclerostin expression in osteocytes of alveolar bone in rats with ligature-induced periodontitis. J Periodontol. 2014;85(11):e370–8.  https://doi.org/10.1902/jop.2014.140230.CrossRefPubMedGoogle Scholar
  29. 29.
    Liu Z, Yan C, Kang C, Zhang B, Li Y. Distributional variations in trabecular architecture of the mandibular bone: an in vivo micro-CT analysis in rats. PLoS One. 2015;10(1):e0116194.  https://doi.org/10.1371/journal.pone.0116194.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Djomehri SI, Candell S, Case T, Browning A, Marshall GW, Yun W, et al. Mineral density volume gradients in normal and diseased human tissues. PLoS One. 2015;10(4):e0121611.  https://doi.org/10.1371/journal.pone.0121611.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Legrand E, Chappard D, Pascaretti C, Duquenne M, Krebs S, Rohmer V, et al. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res. 2000;15(1):13–9.  https://doi.org/10.1359/jbmr.2000.15.1.13.CrossRefPubMedGoogle Scholar
  32. 32.
    Doyard M, Chappard D, Leroyer P, Roth MP, Loreal O, Guggenbuhl P. Decreased bone formation explains osteoporosis in a genetic mouse model of hemochromatosiss. PLoS One. 2016;11(2):e0148292.  https://doi.org/10.1371/journal.pone.0148292.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest. 1983;72(4):1396–409.  https://doi.org/10.1172/jci111096.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Inoue K, Hamano T, Nango N, Matsui I, Tomida K, Mikami S, et al. Multidetector-row computed tomography is useful to evaluate the therapeutic effects of bisphosphonates in glucocorticoid-induced osteoporosis. J Bone Miner Metab. 2014;32(3):271–80.  https://doi.org/10.1007/s00774-013-0485-2.CrossRefPubMedGoogle Scholar
  35. 35.
    Riggs BL, Khosla S, Melton LJ 3rd. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res. 1998;13(5):763–73.  https://doi.org/10.1359/jbmr.1998.13.5.763.CrossRefPubMedGoogle Scholar

Copyright information

© The Society of The Nippon Dental University 2019

Authors and Affiliations

  • Ya-Hsin Wu
    • 1
  • Yuji Taya
    • 2
  • Ryutaro Kuraji
    • 1
    • 3
  • Hiroshi Ito
    • 1
  • Yuuichi Soeno
    • 2
  • Yukihiro Numabe
    • 1
    Email author
  1. 1.Department of PeriodontologyThe Nippon Dental University School of Life Dentistry at TokyoTokyoJapan
  2. 2.Department of PathologyThe Nippon Dental University School of Life Dentistry at TokyoTokyoJapan
  3. 3.Department of Life Science DentistryThe Nippon Dental UniversityTokyoJapan

Personalised recommendations