Advertisement

Odontology

pp 1–11 | Cite as

Surface roughness and wear behavior of occlusal splint materials made of contemporary and high-performance polymers

  • Merve Benli
  • Beril Eker Gümüş
  • Yusuf Kahraman
  • Bilge Gökçen-Rohlig
  • Gülümser Evlioğlu
  • Olivier Huck
  • Mutlu ÖzcanEmail author
Original Article
  • 138 Downloads

Abstract

With the development of a digital technology of computer-assisted manufacturing (CAD/CAM) and new age materials, the use of new types of occlusal splint is to consider. The aim of the present study was to evaluate the surface roughness (Ra) and wear behavior of different CAD/CAM materials against enamel antagonist through a simulated chewing test. A total of 75 specimens made from ethylene vinyl acetate (EVA), polymethyl methacrylate (PMMA), polycarbonate (PC), polyetheretherketone (PEEK), and polyethyleneterephthalate (PETG) as a control were polished to evaluate the Ra before loading by optical profilometry and further analyzed by scanning electron microscopy (SEM). Specimens of each group were subjected to thermomechanical fatigue loading in a chewing simulator (60000 cycles at 49 N with 5–55 °C thermocycling). The wear volume loss and change in Ra of each specimen after the simulated chewing were analyzed. One-way ANOVA, paired samples t test, and Pearson correlation analysis were performed for statistical analyzes. The result showed that the volume loss and Ra varied among the materials tested. EVA exhibited the greatest amount of Ra and volume loss (p < 0.001), while PEEK had the lowest values for both (p < 0.001). In terms of volume loss, there was no significant difference between PC and PMMA (p > 0.05). SEM investigations revealed different wear behaviors, especially in EVA. As PEEK showed significantly more favorable results, PEEK splints should be considered as a new therapeutic option for occlusal splint.

Keywords

Occlusal splint PEEK Wear Surface roughness EVA 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    National Institute of Dental and Craniofacial Research. Prevalence of TMJD and its signs and symptoms. 2018. https://www.nidcr.nih.gov/research/data-statistics/facial-pain/prevalence. Accessed 13 Mar 2019
  2. 2.
    Gil-Martínez A, Paris-Alemany A, López-de-Uralde-Villanueva I, La Touche R. Management of pain in patients with temporomandibular disorder (TMD): challenges and solutions. J Pain Res. 2018;11:571–87.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    De Laat A, Stappaerts K, Papy S. Counseling and physical therapy as treatment for myofascial pain of the masticatory system. J Orofac Pain. 2003;17:42–9.PubMedGoogle Scholar
  4. 4.
    Klasser GD, Greene CS. Oral appliances in the management of temporomandibular disorders. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:212–23.PubMedCrossRefGoogle Scholar
  5. 5.
    Okeson JP. Management of temporomandibular disorders and occlusion. 6th ed. St. Louis: Mosby Inc.; 2008.Google Scholar
  6. 6.
    Crout DK. Anatomy of an occlusal splint. Gen Dent. 2017;65:52–9.PubMedGoogle Scholar
  7. 7.
    List T, Axelsson S. Management of TMD: evidence from systematic reviews and meta-analyses. J. Oral. Rehabil. 2010;37:430–51.PubMedCrossRefGoogle Scholar
  8. 8.
    Pho Duc JM, Hüning SV, Grossi ML. Parallel randomized controlled clinical trial in patients with temporomandibular disorders treated with a CAD/CAM versus a conventional stabilization splint. Int J Prosthodont. 2016;29:340–50.PubMedCrossRefGoogle Scholar
  9. 9.
    Algabri RS, Alqutaibi AY, Keshk AM, Alsourori A, Swedan M, El Khadem AH, et al. Effect of hard versus soft occlusal splint on the management of myofascial pain: systematic review and meta-analysis. Indian J Sci Technol. 2017;10:10–6.CrossRefGoogle Scholar
  10. 10.
    Algabri RS, Alqutaibi AY, Abo-Alrejal H, Al Adashi O, Abdulrahman F, Amr Elkhadem A, et al. Effect of computer-aided design/computer-assisted manufacture versus conventional occlusal splints on the management of temporomandibular disorders: a systematic review and meta-analysis. Int Dent Med J Adv Res. 2017;3:1–9.CrossRefGoogle Scholar
  11. 11.
    Issar-Grill N, Roberts HW, Wright EF, Dixon SA, Vandewalle KS. Volumetric wear of various orthotic appliance materials. Cranio. 2013;31:270–5.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Nekora A, Evlioglu G, Ceyhan A, Keskin H, Issever H. Patient responses to vacuum formed splints compared to heat cured acrylic splints: pilot study. J Maxillofac Oral Surg. 2009;8:31–3.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Kurt H, Erdelt KJ, Cilingir A, Mumcu E, Sülün T, Tuncer N, et al. Two-body wear of occlusal splint materials. J Oral Rehabil. 2012;39:584–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Gautam R, Singh RD, Sharma VP, Siddhartha R, Chand P, Kumar R. Biocompatibility of polymethylmethacrylate resins used in dentistry. J Biomed Mater Res B Appl Biomater. 2012;100:1444–50.PubMedCrossRefGoogle Scholar
  15. 15.
    Seppäläinen AM, Rajaniemi R. Local neurotoxicity of methyl-meth-acrylate among dental technicians. Am J Ind Med. 1984;5(6):471–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Jakstat HA, Ahlers MO. Schienentherapie. In: Ahlers MO, Jakstat HA, editors. Klinische Funktionsanalyse 4. Erweiterte und aktualisierte. Hamburg: DentaConcept; 2011. p. 631–44.Google Scholar
  17. 17.
    Leib AM. Patient preference for light-cured composite bite splint compared to heat-cured acrylic bite splint. J Periodontol. 2001;72:1108–12.PubMedCrossRefGoogle Scholar
  18. 18.
    Casey J, Dunn WJ, Wright E. In vitro wear of various orthotic device materials. J Prosthet Dent. 2003;90:498–502.PubMedCrossRefGoogle Scholar
  19. 19.
    Korioth TW, Hannam AG. Deformation of the human mandible during simulated tooth clenching. J Dent Res. 1994;73:56–66.PubMedCrossRefGoogle Scholar
  20. 20.
    Bumann A, Lotzmann U. Funktionsdiagnostik und Therapieprinzipien. Stuttgart: Thieme; 2000.CrossRefGoogle Scholar
  21. 21.
    Edelhoff D, Schweiger J, Prandtner O, Trimpl J, Stimmelmayr M, Güth JF. CAD/CAM splints for the functional and esthetic evaluation of newly defined occlusal dimensions. Quintessence Int. 2017;48:181–91.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Dunn DB, Lewis MB. CAD/CAM occlusal splints: a new paradigm. Aust Dent Pract. 2011;22:130–4.Google Scholar
  23. 23.
    Wang SM, Li Z, Wang GB, Ye HQ, Liu YS, Tong D, et al. Preliminary clinical application of complete digital workflow of design and manufacturing occlusal splint for sleep bruxism. Beijing Da Xue Xue Bao Yi Xue Ban. 2019;51:105–10.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Huettig F, Kustermann A, Kuscu E, Geis-Gerstorfer J, Spintzyk S. Polishability and wear resistance of splint material for oral appliances produced with conventional, subtractive, and additive manufacturing. J Mech Behav Biomed Mater. 2017;75:175–9.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Al-Dwairi ZN, Tahboub KY, Baba NZ, Goodacre CJ, Özcan M. A comparison of the surface properties of CAD/CAM and conventional polymethylmethacrylate (PMMA). J Prosthodont. 2019;28:452–7.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Edelhoff D, Schweiger J. CAD/CAM tooth-colored splint for the esthetic and functional evaluation of a new vertical dimension of occlusion. Quintessence Dent Tech Yearb. 2014;37:1610–23.Google Scholar
  27. 27.
    Hogan J. DentaBite: a precision engineering solution to a traditional problem. Aust Dent Pract. 2011;8:164–8.Google Scholar
  28. 28.
    Dedem P, Türp JC. Digital Michigan splint—from intraoral scanning to plasterless manufacturing. Int J Comput Dent. 2016;19:63–76.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Lauren M, McIntyre F. A new computer-assisted method for design and fabrication of occlusal splints. Am J Orthod Dentofacial Orthop. 2008;133:S130–5.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Schmidlin PR, Stawarczyk B, Wieland M, Attin T, Hämmerle CH, Fischer J. Effect of different surface pre-treatments and luting materials on shear bond strength to PEEK. Dent Mater. 2010;26:553–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Costa-Palau S, Torrents-Nicolas J, Brufau-de Barberà M, Cabratosa-Termes J. Use of polyetheretherketone in the fabrication of a maxillary obturator prosthesis: a clinical report. J Prosthet Dent. 2014;112:680–2.PubMedCrossRefGoogle Scholar
  32. 32.
    Cavalli V, Giannini M, Carvalho RM. Effect of carbamide peroxide bleaching agents on tensile strength of human enamel. Dent Mater. 2004;20:733–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res. 2016;60:12–9.PubMedCrossRefGoogle Scholar
  34. 34.
  35. 35.
    Perea-Lowery L, Vallittu PK. Resin adjustment of three-dimensional printed thermoset occlusal splints: bonding properties—short communication. J Mech Behav Biomed Mater. 2019;95:215–9.PubMedCrossRefGoogle Scholar
  36. 36.
    ISO, 2009. Geometrical product specifications (GPS)—surface texture: profile method—terms, definitions and surface texture parameters (ISO 4287:1997). International Organization for Standardization. (https://www.iso.org/iso/en/prods-services/ ISOstore/store.htm). Accessed 26 Mar 2019.
  37. 37.
    Park JH, Park S, Lee K, Yun KD, Lim HP. Antagonist wear of three CAD/CAM anatomic contour zirconia ceramics. J Prosthet Dent. 2014;111:20–9.PubMedCrossRefGoogle Scholar
  38. 38.
    DeLong R, Sakaguchi RL, Douglas WH, Pintado MR. The wear of dental amalgam in an artificial mouth: a clinical correlation. Dent Mater. 1985;1:238–42.PubMedCrossRefGoogle Scholar
  39. 39.
    Paulino MR, Alves LR, Gurgel BC, Calderon PS. Simplified versus traditional techniques for complete denture fabrication: a systematic review. J Prosthet Dent. 2015;113:12–6.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Nishigawa K, Bando E, Nakano M. Quantitative study of bite force during sleep associated bruxism. J Oral Rehabil. 2001;28:485–91.PubMedCrossRefGoogle Scholar
  41. 41.
    Nayyer M, Zahid S, Hassan SH, Mian SA, Mehmood S, Khan HA, et al. Comparative abrasive wear resistance and surface analysis of dental resin-based materials. Eur J Dent. 2018;12:57–66.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Matzinger M, Hahnel S, Preis V, Rosentritt M. Polishing effects and wear performance of chairside CAD/CAM materials. Clin Oral Investig. 2019;23:725–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Preis V, Behr M, Handel G, Schneider-Feyrer S, Hahnel S, Rosentritt M. Wear performance of dental ceramics after grinding and polishing treatments. J Mech Behav Biomed Mater. 2012;10:13–22.PubMedCrossRefGoogle Scholar
  44. 44.
    Heintze SD, Cavalleri A, Forjanic M, Zellweger G, Rousson V. Wear of ceramic and antagonist—a systematic evaluation of influencing factors in vitro. Dent Mater. 2008;24:433–49.PubMedCrossRefGoogle Scholar
  45. 45.
    Hamanaka I, Iwamoto M, Lassila LVJ, Vallittu PK, Takahashi Y. Wear resistance of injection-molded thermoplastic denture base resins. Acta Biomater Odontol Scand. 2016;2:31–7.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Harrison Z, Johnson A, Douglas CWI. An in vitro study into the effect of a limited range of denture cleaners on surface hardness and removal of Candida albicans from conventional heat-cured acrylic resin denture base material. J Oral Rehabil. 2004;31:460–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Yap AUJ, Wee KEC, Teoh SH, Chew CL. Influence of thermal cycling on OCA wear of composite restoratives. Oper Dent. 2001;26:349–56.PubMedGoogle Scholar
  48. 48.
    Rayyan MM, Aboushelib M, Sayed NM, Ibrahim A, Jimbo R. Comparison of interim restorations fabricated by CAD/CAM with those fabricated manually. J Prosthet Dent. 2015;114:414–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Lutz AM, Hampe R, Roos M, Lümkemann N, Eichberger M, Stawarczyk B. Fracture resistance and 2-body wear of 3-dimensional-printed occlusal devices. J Prosthet Dent. 2019;121:166–72.PubMedCrossRefGoogle Scholar
  50. 50.
    Reyes-Sevilla M, Kuijs RH, Werner A, Kleverlaan CJ, Lobbezoo F. Comparison of wear between occlusal splint materials and resin composite materials. J Oral Rehabil. 2018;45:539–44.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Coto NP, e Dias RB, Costa RA, Antoniazzi TF, de Carvalho EP. Mechanical behavior of ethylene vinyl acetate copolymer (EVA) used for fabrication of mouthguards and interocclusal splints. Braz Dent J. 2007;18:324–8.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Stawarczyk B, Sener B, Trottmann A, Roos M, Ozcan M, Hämmerle CH. Discoloration of manually fabricated resins and industrially fabricated CAD/CAM blocks versus glass-ceramic: effect of storage media, duration, and subsequent polishing. Dent Mater J. 2012;31:377–83.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Skirbutis G, Dzingutė A, Masiliūnaitė V, Šulcaitė G, Žilinskas J. PEEK polymer’s properties and its use in prosthodontics. A review. Stomatologija. 2018;20:54–8.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Sano H, Ciucchi B, Matthews WG, Pashley DH. Tensile properties of mineralized and demineralized human and bovine dentin. J Dent Res. 1994;73:1205–11.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Sandler J, Werner P, Milo SPS, Demchuk V, Altstädt V, Windle AH. Carbon-nanofibre-reinforced poly (ether ether ketone) composites. Compos Part A Appl Sci Manuf. 2002;33:1033–9.CrossRefGoogle Scholar
  56. 56.
    Choi JW, Song EJ, Shin JH, Jeong TS, Huh JB. In vitro investigation of wear of CAD/CAM polymeric materials against primary teeth. Materials (Basel). 2017;10:1410.PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Beuer F, Steff B, Naumann M, Sorensen JA. Load-bearing capacity of all-ceramic three-unit fixed partial dentures with different computer-aided design (CAD)/computer-aided manufacturing (CAM) fabricated framework materials. Eur J Oral Sci. 2008;11:381–6.CrossRefGoogle Scholar
  58. 58.
    Zok FW, Miserez A. Property maps for abrasion resistance of materials. Acta Mater. 2007;55:6365–71.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Wimmer T, Huffmann AM, Eichberger M, Schmidlin PR, Stawarczyk B. Two-body wear rate of PEEK, CAD/CAM resin composite and PMMA: effect of specimen geometries, antagonist materials and test set-up configuration. Dent Mater. 2016;32:e127–36.PubMedCrossRefGoogle Scholar
  60. 60.
    Bollen CM, Papaioanno W, Van Eldere J, Schepers E, Quirynen M, van Steenberghe D. The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis. Clin oral Implants Res. 1996;7:201–11.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Quirynen M, Bollen CM, Papaioannou W, Van Eldere J, van Steenberghe D. The influence of titanium abutment surface roughness on plaque accumulation and gingivitis: short-term observations. Int J Oral Maxilofac Implants. 1996;11:169–78.Google Scholar
  62. 62.
    Prpic V, Slacanin I, Schauperl Z, Catic A, Dulcic N, Cimic S. A study of the flexural strength and surface hardness of different materials and technologies for occlusal device fabrication. J Prosthet Dent. 2019;121:955–9.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© The Society of The Nippon Dental University 2019

Authors and Affiliations

  1. 1.Faculty of Dentistry, Department of ProsthodonticsIstanbul UniversityIstanbulTurkey
  2. 2.Science and Technology Application and Research CenterYıldız Technical UniversityIstanbulTurkey
  3. 3.Osteoarticular and Dental Regenerative Nanomedicine’, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS)INSERM, UMR 1260StrasbourgFrance
  4. 4.Pôle de Médecine et de Chirurgie Bucco-DentaireHôpitaux Universitaires de StrasbourgStrasbourgFrance
  5. 5.Faculté de Chirurgie DentaireUniversité de StrasbourgStrasbourgFrance
  6. 6.Dental Materials Unit, Center for Dental and Oral Medicine Clinic for Fixed and Removable Prosthodontics and Dental Materials ScienceUniversity of ZürichZurichSwitzerland

Personalised recommendations