, Volume 107, Issue 2, pp 174–185 | Cite as

White-to-opaque switching is involved in the phospholipase B production of Candida dubliniensis on Price’s egg yolk agar

  • Kayoko Fukui
  • Kenjirou NakamuraEmail author
  • Haruhiro Kuwashima
  • Toshiro Majima
Original Article


Measuring the production of Candida dubliniensis (C. dubliniensis) phospholipase B (PLase B) by the Price’s method has long been considered to be unattainable because the levels of PLase produced are undetectable. In this study, C. dubliniensis, C. glabrata, C. guilliermondii, C. krusei, C. parapsilosis and C. tropicalis were shown to produce PLase B and form clear white zones around their colonies when peptone, a component of the original Price’s egg yolk (OP) agar, is replaced with a yeast nitrogen base (YNB). This new medium is named modified Price’s (MP) agar. Based on this finding, we propose a new modified Price’s (NMP) agar containing 0.75% peptone and 0.25% YNB, which enabled measurement of PLase B production by C. dubliniensis and C. albicans with results consistent with those obtained for C. albicans grown on OP agar. We strongly believe that the MP and NMP agars are very useful for screening PLase B production by C. dubliniensis and non-albicans Candida spp. Moreover, the addition of several bioactive agents (the proteinase inhibitors pepstatin A and saquinavir, the calcineurin inhibitors cyclosporine A and tacrolimus, the cell-permeable cAMP analog dBcAMP, and the quorum-sensing molecule farnesol) to the OP agar enhanced PLase B production by C. dubliniensis. During the course of our study to clarify the reason why PLase B was not produced, we found that C. dubliniensis cells grown on OP agar undergo a white-to-opaque transition, which may explain why they showed minimal production of PLase B on this medium.


Candida dubliniensis Phospholipase B Price’s egg yolk agar White-to-opaque transition Stress kinase 



We thank Honorary Prof. S. Aoki of the Advanced Research Center, The Nippon Dental University School of Life Dentistry at Niigata for his encouragement and constant support. We also thank Dr. Ito-Kuwa for helpful advice. We thank the Edanz Group ( for editing a draft of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Sullivan DJ, Westerneng TJ, Haynes KA, Bennett DE, Coleman DC. Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology. 1995;141:1507–21.CrossRefGoogle Scholar
  2. 2.
    Sullivan DJ, Moran GP, Pinjon E, Al-Mosaid A, Stokes C, Vaughan C, Coleman DC. Comparison of the epidemiology, drug resistance mechanisms, and virulence of Candida dubliniensis and Candida albicans. FEMS Yeast Res. 2004;4:369–76.CrossRefGoogle Scholar
  3. 3.
    Jackson AP, Gamble JA, Yeomans T, Moran GP, Saunders D, Harris D, Aslett M, Barrell JF, Butler G, Citiulo F, Coleman DC, Groot PWJ, Goodwin TJ, Quail MA, McQuillan J, Munro CA, Pain A, Poulter RT, Rajandream MA, Renauld H, Spiering M, Tivey A, Gow NAR, Barrell B, Sullivan DJ, Berriman M. Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Genome Res. 2009;19:2231–44.CrossRefGoogle Scholar
  4. 4.
    Moran GP, Coleman DC, Sullivan DJ. Candida albicans versus Candida dubliniensis: Why is C. albicans more pathogenic? Int J Microbiol. 2012. Scholar
  5. 5.
    Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J, Höfs S, Gratacap RL, Robbins J, Runglall M, Murciano C, Blagojevic M, Thavaraj S, Föster TM, Hebecker B, Kasper L, Vizcay G, Iancu SI, Kichik N, Häder A, Kurzai O, Luo T, Krüger T, Kniemeyer O, Cota E, Bader O, Wheeler RT, Gutsmann T, Hube B, Naglik JR. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature. 2016;532:64–8.CrossRefGoogle Scholar
  6. 6.
    Ghannoum MA. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev. 2000;13:122–43.CrossRefGoogle Scholar
  7. 7.
    Ibrahim AS, Mirbod F, Filler SG, Banno Y, Cole GT, Kitajima Y, Cole G, Kitajima Y, Edwards JE, Nozawa Y, Ghannoum MA. Evidence implicating phospholipase as a virulence factor of Candida albicans. Infect Immun. 1995;63:1993–8.Google Scholar
  8. 8.
    Samaranayake YH, Dassanayake RS, Jayatilake JAMS, Cheung BPK, Yau JYY, Yeung KWS, Samaranayake LP. Phospholipase B enzyme expression is not associated with other virulence attributes in Candida albicans isolates from patients with human immunodeficiency virus infection. J Med Microbiol. 2005;54:583–93.CrossRefGoogle Scholar
  9. 9.
    Samaranayake YH, Dassanayake RS, Cheung BPK, Jayatilake JAMS, Yeung KWS, Yau JYY, Samaranayake LP. Differential phospholipase gene expression by Candida albicans in artificial media and cultured human oral epithelium. APMIS. 2006;114:857–66.CrossRefGoogle Scholar
  10. 10.
    Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev. 2003;67:400–28.CrossRefGoogle Scholar
  11. 11.
    Naglik JR, Rodgers CA, Shirlaw PJ, Dobbie JL, Naglik LLF, Greenspan D, Agabian N, Challacombe SJ. Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in humans correlates with active oral and vaginal infection. J Infect Dis. 2003;188:469–79.CrossRefGoogle Scholar
  12. 12.
    Rapala-Kozik M, Bochenska O, Zajac D, Karkowska-Kuleta J, Gogol M, Zawrotniak M, Kozik A. Extracellular proteinases of Candida species pathogenic yeasts. Mol Oral Microbiol. 2017. Scholar
  13. 13.
    Schaller M, Borelli C, Korting HC, Hube B. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses. 2005;48:365–77.CrossRefGoogle Scholar
  14. 14.
    Price MF, Wilkinson ID, Gentry LO. Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia. 1982;20:7–14.CrossRefGoogle Scholar
  15. 15.
    Hannula J, Saarela M, Dogan B, Paatsama J, Koukila-Kähkölä P, Pirinen S, Alakomi HL, Perheentupa J, Asikainen S. Comparison of virulence factors of oral Candida dubliniensis and Candida albicans isolates in healthy people and patients with chronic candidosis. Oral Microbiol Immunol. 2000;15:238–44.CrossRefGoogle Scholar
  16. 16.
    Fotedar R, Al-Hedaithy SSA. Comparison of phospholipase and proteinase activity in Candida albicans and C. dubliniensis. Mycoses. 2005;48:62–7.CrossRefGoogle Scholar
  17. 17.
    Scheid LA, Mario DAN, Lopes PGM, Loreto E, Linares CEB, Santurio JM, Alves SH. Candida dubliniensis does not show phospholipase activity: true or false? Rev Soc Bras Med Trop. 2010;43:205–6.CrossRefGoogle Scholar
  18. 18.
    Yoshioka H, Ito-Kuwa S, Nakamura K, Mataga S. Virulence of Candida dubliniensis in comparison with Candida albicans using an experimental model of mouse oral candidiasis. Med Mycol J. 2012;53:135–45.CrossRefGoogle Scholar
  19. 19.
    Surlow BA, Cooley BM, Needham PG, Brodsky JL, Patton-Vogt J. Loss of Ypk1, the yeast homolog to the human serum- and glucocorticoid-induced protein kinase, accelerates phospholipase B1-mediated phosphatidylcholine deacylation. J Biol Chem. 2014;289:31591–604.CrossRefGoogle Scholar
  20. 20.
    Scaduto CM, Bennet RJ. Candida albicans the chameleon: transitions and interactions between multiple phenotypic states confer phenotypic plasticity. Curr Opin Microbiol. 2015;26:102–8.CrossRefGoogle Scholar
  21. 21.
    Pujol C, Daniels KJ, Lockhart SR, Srikantha T, Radke JB, Geiger J, Soll DR. The closely related species Candida albicans and Candida dubliniensis can mate. Eukaryot Cell. 2004;3:1015–27.CrossRefGoogle Scholar
  22. 22.
    Noble SM, Gianetti BA, Witchley JN. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat Rev Microbiol. 2017;15:96–108.CrossRefGoogle Scholar
  23. 23.
    Slutsky B, Staebell M, Anderson J, Risen L, Pfaller M, Soll DR. White-opaque transition: a second high-frequency switching system in Candida albicans. J Bacteriol. 1987;169:189–97.CrossRefGoogle Scholar
  24. 24.
    Yue H, Hu J, Guan G, Tao L, Du H, Li H, Huang G. Discovery of the gray phenotype and white-gray-opaque tristable phenotypic transitions in Candida dubliniensis. Virulence. 2016;7:230–42.CrossRefGoogle Scholar
  25. 25.
    Pericolini E, Gabrielli E. Gray phenotype: enhanced fitness strategy for Candida dubliniensis? Virulence. 2016;7:211–3.CrossRefGoogle Scholar
  26. 26.
    Porman AM, Alby K, Hirakawa MP, Bennett RJ. Discovery of a phenotypic switch regulating sexual mating in the opportunistic fungal pathogen Candida tropicalis. Proc Natl Acad Sci USA. 2011;108:21158–63.CrossRefGoogle Scholar
  27. 27.
    Majima T, Ito-Kuwa S, Nagatomi R, Nakamura K. Study of the oral carriage of Candida sp. in dental students and staff—identification of Candida sp. and background survey. Oral Sci Int. 2014;11:30–4.CrossRefGoogle Scholar
  28. 28.
    Miyakawa I, Aoi H, Sando N, Kuroiwa T. Fluorescence microscopic studies of mitochondrial nucleoids during meiosis and sporulation in the yeast, Saccharomyces cerevisiae. J Cell Sci. 1984;66:21–38.Google Scholar
  29. 29.
    Takano M, Hayashi N, Kuroda K. Selective staining and visualization of hyphal sheath of a white-rot fungus Phanerochaete crassa WD1694 with phloxine B. Jpn Wood Sci. 2008;54:76–80.CrossRefGoogle Scholar
  30. 30.
    Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.CrossRefGoogle Scholar
  31. 31.
    Polak A. Virulence of Candida albicans mutants. Mycoses. 1992;35:9–16.CrossRefGoogle Scholar
  32. 32.
    Anderson JM, Soll DR. Unique phenotype of opaque cells in the white-opaque transition of Candida albicans. J Bacteriol. 1987;169:5579–88.CrossRefGoogle Scholar
  33. 33.
    Fu Y, Ibrahim AS, Fonzi W, Zhou X, Ramos CF, Ghannoum MA. Cloning and characterization of a gene (LIP1) which encodes a lipase from the pathogenic yeast Candida albicans. Microbiology. 1997;143:331–40.CrossRefGoogle Scholar
  34. 34.
    Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA. Differential expression of Candida albicans phospholipase B (PLB1) under various environmental and physiological conditions. Microbiology. 2003;149:261–7.CrossRefGoogle Scholar
  35. 35.
    Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4:119–28.CrossRefGoogle Scholar
  36. 36.
    Hoover CI, Jantapour MJ, Newport G, Agabian N, Fisher SJ. Cloning and regulated expression of the Candida albicans phospholipase B (PLB1) gene. FEMS Microbiol Lett. 1998;167:163–9.CrossRefGoogle Scholar
  37. 37.
    Enjalbert B, Smith DA, Cornell MJ, Alam I, Nicholls S, Brown AJP, Quinn J. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol Biol Cell. 2006;17:1018–32.CrossRefGoogle Scholar
  38. 38.
    José CS, Monge RA, Pla RPJ, Nombela C. The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. J Bacteriol. 1996;178:5850–2.CrossRefGoogle Scholar
  39. 39.
    Bishop AC, Ganguly S, Solis NV, Cooley BM, Jensen-Seaman MI, Filler SG, Mitchell AP, Patton-Vogt J. Glycerophosphocholine utilization by Candida albicans. Role of the Git3 transporter in virulence. J Biol Chem. 2013;288:33939–52.CrossRefGoogle Scholar
  40. 40.
    Enjalbert B, Moran GP, Vaughan C, Yeomans T, MacCallum DM, Quinn J, Coleman DC, Brown AJP, Sullivan DJ. Genome-wide gene expression profiling and a forward genetic screen show that differential expression of the sodium ion transporter Ena21 contributes to the differential tolerance of Candida albicans and Candida dubliniensis to osmotic stress. Mol Microbiol. 2009;72:216–28.CrossRefGoogle Scholar
  41. 41.
    Lan CY, Newport G, Murillo LA, Jones T, Scherer S, Davis RW, Agabian N. Metabolic specialization associated with phenotypic switching in Candida albicans. Proc Natl Acad Sci USA. 2002;99:14907–12.CrossRefGoogle Scholar
  42. 42.
    Aoki S, Ito-Kuwa S, Nakamura K, Kato J, Ninimiya K, Vidotto V. Extracellular proteolytic activity of Cryptococcus neoformans. Mycopathologia. 1994;128:143–50.CrossRefGoogle Scholar
  43. 43.
    Román E, Cottier F, Ernst JF, Pla J. Msb2 signaling mucin controls activation of Cek1 mitogen-activated protein kinase in Candida albicans. Eukaryot Cell. 2009;8:1235–40.CrossRefGoogle Scholar
  44. 44.
    Puri S, Kumar R, Chadha S, Tati S, Conti HR, Hube B, Cullen PJ, Edgerton M. Secreted aspartic protease cleavage of Candida albicans Msb2 activates Cek1 MAPK signaling affecting biofilm formation and oropharyngeal candidiasis. PLoS One. 2012. Scholar
  45. 45.
    Swidergall M, Wijlick L, Ernst JF. Signaling domains of mucin Msb2 in Candida albicans. Eukaryot Cell. 2015;14:359–70.CrossRefGoogle Scholar
  46. 46.
    Saraswat D, Kumar R, Pande T, Edgerton M, Cullen P. Signalling mucin Msb2 regulates adaptation to thermal stress in Candida albicans. Mol Microbiol. 2016;100:425–41.CrossRefGoogle Scholar
  47. 47.
    Ramírez-Zavala B, Weyler M, Gildor T, Schmauch C, Kornitzer D, Arkowitz R, Morschhäuser J. Activation of the Cph1-dependent MAP kinase signaling pathway induces white-opaque switching in Candida albicans. PLoS Pathog. 2013. Scholar
  48. 48.
    Zhao R, Lockhart SR, Daniels K, Soll DR. Roles of TUP1 in switching, phase maintenance, and phase-specific gene expression in Candida albicans. Eukaryot Cell. 2002;1:356–65.CrossRefGoogle Scholar
  49. 49.
    Tuch BB, Mitrovich QM, Homann OR, Hernday AD, Monighetti CK, Vega FMDL, Johnson AD. The transcriptomes of two heritable cell types illuminate the circuit governing their differentiation. PLoS Genet. 2010. Scholar
  50. 50.
    Grumaz C, Lorenz S, Stevens P, Lindemann E, Schöck U, Retey J, Rupp S, Sohn K. Species and condition specific adaptation of the transcriptional landscapes in Candida albicans and Candida dubliniensis. BMC Genom. 2013. Scholar
  51. 51.
    Yu SJ, Chang YL, Chen YL. Calcineurin signaling: lessons from Candida species. FEMS Yeast Res. 2015. Scholar
  52. 52.
    Chen YL, Brand A, Morrison EL, Silao FGS, Bigol UG, Malbas FF, Nett JE, Andes DR, Solis NV, Filler SG, Averette A, Heitman J. Calcineurin controls drug tolerance, hyphal growth, and virulence in Candida dubliniensis. Eukaryot Cell. 2011;10:803–19.CrossRefGoogle Scholar
  53. 53.
    Sharkey LL, McNemar MD, Saporito-Irwin SM, Sypherd PS, Fonzi WA. HWP1 functions in the morphological development of Candida albicans downstream of EFG1, TUP1, and RBF1. J Bacteriol. 1999;181:5273–9.Google Scholar
  54. 54.
    Nickerson KW, Atkin AL. Deciphering fungal dimorphism: Farnesol’s unanswered questions. Mol Microbiol. 2017;103:567–75.CrossRefGoogle Scholar
  55. 55.
    Han TL, Cannon RD, Villas-Bôas SG. The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol. 2011;48:747–63.CrossRefGoogle Scholar
  56. 56.
    Smith DA, Nicolls S, Morgan BA, Brown AJP, Quinn J. A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol Biol Cell. 2004;15:4179–90.CrossRefGoogle Scholar
  57. 57.
    Román E, Alonso-Monge R, Gong Q, Li D, Calderone R, Pla J. The Cek1 MAPK is a short-lived protein regulated by quorum sensing in the fungal pathogen Candida albicans. FEMS Yeast Res. 2009;9:942–55.CrossRefGoogle Scholar
  58. 58.
    Melo NR, Taguchi H, Culhari VP, Kamei K, Mikami Y, Smith SN, Vilela MS. Oral candidiasis of HIV-infected children undergoing sequential HIV therapies. Med Mycol. 2009;47:149–56.CrossRefGoogle Scholar
  59. 59.
    Solis NV, Park YN, Swidergall M, Daniels KJ, Filler SG, Soll DR. Candida albicans white-opaque switching influences virulence but not mating during oropharyngeal candidiasis. Infect Immun. 2018. Scholar

Copyright information

© The Society of The Nippon Dental University 2018

Authors and Affiliations

  • Kayoko Fukui
    • 1
  • Kenjirou Nakamura
    • 1
    Email author
  • Haruhiro Kuwashima
    • 1
  • Toshiro Majima
    • 1
  1. 1.Department of PharmacologyThe Nippon Dental University School of Life Dentistry at NiigataNiigataJapan

Personalised recommendations