Advertisement

Odontology

pp 1–9 | Cite as

Effect of self-etch adhesives on the internal adaptation of composite restoration: a CP-OCT Study

  • Turki A. Bakhsh
  • Nour H. Altouki
  • Lina S. Baeesa
  • Ruba A. Baamer
  • Reema M. Alshebany
  • Zuhair Natto
  • Adnan Nasir
  • Alaa Turkistani
  • Fatin Hasanain
  • Ghada H. Naguib
Original Article
  • 107 Downloads

Abstract

Despite improvements in dental adhesive materials, internal adaptation remains a challenge in bonded restorations. The aim of this study was to compare microgaps and internal floor adaptation between two different self-etch adhesives in class-V cavities using cross-polarization optical coherence tomography (CP-OCT). In this in vitro study, standardized round class-V cavities were prepared in 20 non-carious human upper central incisor teeth. They were randomly divided into two groups, TN and SE, with each group receiving a different dental adhesive. In TN group, the adhesive used was all-in-one Tetric N-Bond Self-Etch (TN; Ivoclar/Vivadent, Liechtenstein), while SE group was bonded with two-step self-etch Clearfil SE Bond 2 adhesive (SE; Kuraray Noritake Dental Inc, Japan). The prepared cavities were restored with flowable composite and then stored in distilled water for 24 h. Next, they were immersed in silver nitrate, followed by immersion in a photo-developing solution. Optical comparison was carried out by CP-OCT to assess microgaps and composite adaptation at the cavity floor. A Mann–Whitney test was applied to the data, which showed a statistically significant difference in composite adaptation among the two groups (p < 0.001) with the SE group showing superior adaptation. CP-OCT is a reliable tool for non-invasive imaging that gives an insight into composite performance. Better adaptation was found with the two-step self-adhesive for the composite used in this study.

Keywords

Imaging OCT Tooth Microgaps Adhesive 

Notes

Acknowledgements

This work was partially supported by the Academy of International Medical Center, Jeddah, Saudi Arabia and partly by Saudi Dental Research group (SDR). The authors therefore acknowledge with thanks the International Medical Center and SDR for technical support. We would also like to show our gratitude to Muhannad Shuman, Malek Eldesouky, Nadyah Althafir, Shahad Almaghamsi and Ather Aljarullah for their assistance in this research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    Tay FR, Pashley DH. Dental adhesives of the future. J Adhes Dent. 2002;4(2):91–103.PubMedGoogle Scholar
  2. 2.
    De Munck J, Van Landuyt K, Peumans M, Poitevin A, Lambrechts P, Braem M, et al. A critical review of the durability of adhesion to tooth tissue: methods and results. J Dent Res. 2005;84(2):118–32.CrossRefPubMedGoogle Scholar
  3. 3.
    Sofan E, Sofan A, Palaia G, Tenore G, Romeo U, Migliau G. Classification review of dental adhesive systems: from the IV generation to the universal type. Ann Stomatol. 2017;8(1):1–17.CrossRefGoogle Scholar
  4. 4.
    Swift EJ. Jr. Dentin bonding: what is the state of the art? Compend Contin Educ Dent. 2001;22:4–7 (quiz 18).PubMedGoogle Scholar
  5. 5.
    Hashimoto M, Ito S, Tay FR, Svizero NR, Sano H, Kaga M, et al. Fluid movement across the resin-dentin interface during and after bonding. J Dent Res. 2004;83(11):843–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Bakhsh TA, Sadr A, Shimada Y, Tagami J, Sumi Y. Non-invasive quantification of resin-dentin interfacial gaps using optical coherence tomography: validation against confocal microscopy. Dent Mater. 2011;27(9):915–25.CrossRefPubMedGoogle Scholar
  7. 7.
    Shimada Y, Nakagawa H, Sadr A, Wada I, Nakajima M, Nikaido T, et al. Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo. J Biophotonics. 2014;7(7):506–13.CrossRefPubMedGoogle Scholar
  8. 8.
    Fercher AF, Mengedoht K, Werner W. Eye-length measurement by interferometry with partially coherent light. Opt Lett. 1988;13(3):186–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Sinescu C, Negrutiu ML, Nica L, Manescu A, Duma V-F, Podoleanu AG, editors. MicroCT and optical coherence tomography imagistic assessment of the dental roots adhesive. In: Proc. SPIE 9417, Medical Imaging. 2015; Biomedical applications in molecular, structural, and functional imaging: 94170U.Google Scholar
  10. 10.
    Castonguay A, Lefebvre J, Pouliot P, Lesage F. Comparing three-dimensional serial optical coherence tomography histology to MRI imaging in the entire mouse brain. J Biomed Opt. 2018;23(1):016008.CrossRefGoogle Scholar
  11. 11.
    Jing J, Li J, Li X, Yin J, Zhang J, Hoang K, et al. Advances in a fully integrated intravascular OCT-ultrasound system for cardiovascular imaging. In: Proc. SPIE 8213. 2012; Optical coherence tomography and coherence domain optical methods in biomedicine vol XVI, pp 82130Y.Google Scholar
  12. 12.
    Espigares J, Sadr A, Hamba H, Shimada Y, Otsuki M, Tagami J, et al. Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus X-ray computed tomography. J Med Imaging. 2015;2(1):014001.CrossRefGoogle Scholar
  13. 13.
    Wilder-Smith P, Lee K, Guo S, Zhang J, Osann K, Chen Z, et al. In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients. Lasers Surg Med. 2009;41(5):353–7.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wang Y, Bower BA, Izatt JA, Tan O, Huang D. Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J Biomed Opt. 2008;13(6):064003.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Colston B, Sathyam U, Dasilva L, Everett M, Stroeve P, Otis L. Dental OCT. Opt Express. 1998;3(6):230–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Lenton P, Rudney J, Fok A, Jones RS. Clinical cross-polarization optical coherence tomography assessment of subsurface enamel below dental resin composite restorations. J Med Imaging. 2014;1(1):016001.CrossRefGoogle Scholar
  17. 17.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Shimada Y, Sadr A, Burrow MF, Tagami J, Ozawa N, Sumi Y. Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries. J Dent. 2010;38(8):655–65.CrossRefPubMedGoogle Scholar
  19. 19.
    Shimada Y, Sadr A, Nazari A, Nakagawa H, Otsuki M, Tagami J, et al. 3D evaluation of composite resin restoration at practical training using swept-source optical coherence tomography (SS-OCT). Dent Mater J. 2012;31(3):409–17.CrossRefPubMedGoogle Scholar
  20. 20.
    Makishi P, Shimada Y, Sadr A, Tagami J, Sumi Y. Non-destructive 3D imaging of composite restorations using optical coherence tomography: marginal adaptation of self-etch adhesives. J Dent. 2011;39:316–25.CrossRefPubMedGoogle Scholar
  21. 21.
    Makishi P, Thitthaweerat S, Sadr A, Shimada Y, Martins AL, Tagami J, et al. Assessment of current adhesives in class I cavity: nondestructive imaging using optical coherence tomography and microtensile bond strength. Dent Mater. 2015;31(9):e190–200.CrossRefPubMedGoogle Scholar
  22. 22.
    Bista B, Sadr A, Nazari A, Shimada Y, Sumi Y, Tagami J. Nondestructive assessment of current one-step self-etch dental adhesives using optical coherence tomography. J Biomed Opt. 2013;18(7):76020.CrossRefPubMedGoogle Scholar
  23. 23.
    Imai K, Shimada Y, Sadr A, Sumi Y, Tagami J. Noninvasive cross-sectional visualization of enamel cracks by optical coherence tomography in vitro. J Endod. 2012;38(9):1269–74.CrossRefPubMedGoogle Scholar
  24. 24.
    Bakhsh TA, Bakry AS, Mandurah MM, Abbassy MA. Novel evaluation and treatment techniques for white spot lesions. An in vitro study. Orthod Craniofac Res. 2017;20(3):170–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Nee A, Chan K, Kang H, Staninec M, Darling CL, Fried D. Longitudinal monitoring of demineralization peripheral to orthodontic brackets using cross polarization optical coherence tomography. J Dent. 2014;42(5):547–55.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lammeier C, Li Y, Lunos S, Fok A, Rudney J, Jones RS. Influence of dental resin material composition on cross-polarization-optical coherence tomography imaging. J Biomed Opt. 2012;17(10):106002.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Makishi P, Shimada Y, Sadr A, Tagami J, Sumi Y. Non-destructive 3D imaging of composite restorations using optical coherence tomography: marginal adaptation of self-etch adhesives. J Dent. 2011;39(4):316–25.CrossRefPubMedGoogle Scholar
  28. 28.
    Liu B, Brezinski ME. Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography. J Biomed Opt. 2007;12(4):044007.CrossRefPubMedGoogle Scholar
  29. 29.
    Bakhsh TA, Sadr A, Shimada Y, Mandurah MM, Hariri I, Alsayed EZ, et al. Concurrent evaluation of composite internal adaptation and bond strength in a class-I cavity. J Dent. 2013;41(1):60–70.CrossRefPubMedGoogle Scholar
  30. 30.
    Sadr A, Mayoral Molina JR, Shimada Y, Bakhsh TA, Cho E, Tagami J. Real-time tomographic monitoring of composite restoration placement using SS-OCT. J Dent Res. 2010;2010:1501.Google Scholar
  31. 31.
    Sadr A, Shimada Y, Mayoral JR, Hariri I, Bakhsh TA, Sumi S, et al. Swept source optical coherence tomography for quantitative and qualitative assessment of dental composite restorations. Proc SPIE Lasers Dent XVII. 2011;7884:78840C.CrossRefGoogle Scholar
  32. 32.
    Hariri I, Sadr A, Shimada Y, Tagami J, Sumi Y. Effects of structural orientation of enamel and dentine on light attenuation and local refractive index: an optical coherence tomography study. J Dent. 2012;40(5):387–96.CrossRefPubMedGoogle Scholar
  33. 33.
    Mandurah MM, Sadr A, Shimada Y, Kitasako Y, Nakashima S, Bakhsh TA, et al. Monitoring remineralization of enamel subsurface lesions by optical coherence tomography. J Biomed Opt. 2013;18(4):046006.CrossRefPubMedGoogle Scholar
  34. 34.
    Turkistani A, Sadr A, Shimada Y, Nikaido T, Sumi Y, Tagami J. Sealing performance of resin cements before and after thermal cycling: evaluation by optical coherence tomography. Dent Mater. 2014;30(9):993–1004.CrossRefPubMedGoogle Scholar
  35. 35.
    Simon JC, Kang H, Staninec M, Jang AT, Chan KH, Darling CL, et al. Near-IR and CP-OCT imaging of suspected occlusal caries lesions. Lasers Surg Med. 2017;49(3):215–24.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Turkistani A, Almutairi M, Banakhar N, Rubehan R, Mugharbil S, Jamleh A, et al. Optical evaluation of enamel microleakage with one-step self-etch adhesives. Photomed Laser Surg. 2018.  https://doi.org/10.1089/pho.2018.4441.PubMedGoogle Scholar
  37. 37.
    Bakhsh TA, Eldesouky MH, Almaghamsi S, Al Thafere NJ, Hussein A, Turkistani A, et al. Optical quantification of microgaps at dentin-composite interface. Biomed Phys Eng Express. 2018.  https://doi.org/10.1088/2057-1976/aac9f2.Google Scholar
  38. 38.
    Bakhsh TA, Sadr A, Mandurah MM, Shimada Y, Zakaria O, Tagami J. In situ characterization of resin-dentin interfaces using conventional vs. cryofocused ion-beam milling. Dent Mater. 2015;31(7):833–44.CrossRefPubMedGoogle Scholar
  39. 39.
    Giannini M, Makishi P, Ayres AP, Vermelho PM, Fronza BM, Nikaido T, et al. Self-etch adhesive systems: a literature review. Braz Dent J. 2015;26(1):3–10.CrossRefPubMedGoogle Scholar
  40. 40.
    Toledano M, Osorio R, Albaladejo A, Aguilera FS, Osorio E. Differential effect of in vitro degradation on resin-dentin bonds produced by self-etch versus total-etch adhesives. J Biomed Mater Res A. 2006;77(1):128–35.CrossRefPubMedGoogle Scholar
  41. 41.
    Ozer F, Blatz MB. Self-etch and etch-and-rinse adhesive systems in clinical dentistry. Compend Contin Educ Dent. 2013;34(1):12-4, 6, 8 (quiz 20, 30).Google Scholar
  42. 42.
    Bakhsh TA, Al-Zayer M, Al-Sahwan N, Al-Bahrani Z, Bakry AS, Jamleh AO, Al-Sayed EZ, Mandurah M, Abbassy M. Comparative SEM observation of silver-nitrate at resin-dentin interface: nanoleakage study. Oral Health Care. 2017;2(2):1–5.Google Scholar
  43. 43.
    Yuan Y, Shimada Y, Ichinose S, Tagami J. Effect of dentin depth on hybridization quality using different bonding tactics in vivo. J Dent. 2007;35(8):664–72.CrossRefPubMedGoogle Scholar
  44. 44.
    Peumans M, De Munck J, Van Landuyt KL, Poitevin A, Lambrechts P, Van Meerbeek B. Eight-year clinical evaluation of a 2-step self-etch adhesive with and without selective enamel etching. Dent Mater. 2010;26(12):1176–84.CrossRefPubMedGoogle Scholar
  45. 45.
    Tay FR, Gwinnett JA, Wei SH. Relation between water content in acetone/alcohol-based primer and interfacial ultrastructure. J Dent. 1998;26(2):147–56.CrossRefPubMedGoogle Scholar
  46. 46.
    Bakhsh TA, Abumansour M, Shuman M, Alshouibi E, Jamleh A. Time sensitivity associated with the application of water-based all-in-one adhesive system. Cogent Eng. 2018.  https://doi.org/10.1080/23311916.2018.1472052.Google Scholar
  47. 47.
    Felizardo KR, Lemos LV, de Carvalho RV, Gonini Junior A, Lopes MB, Moura SK. Bond strength of HEMA-containing versus HEMA-free self-etch adhesive systems to dentin. Braz Dent J. 2011;22(6):468–72.CrossRefPubMedGoogle Scholar
  48. 48.
    Nurrohman H, Nikaido T, Takagaki T, Sadr A, Ichinose S, Tagami J. Apatite crystal protection against acid-attack beneath resin-dentin interface with four adhesives: TEM and crystallography evidence. Dent Mater. 2012;28(7):e89–98.CrossRefPubMedGoogle Scholar
  49. 49.
    Nikaido T, Nurrohman H, Takagaki T, Sadr A, Ichinose S, Tagami J. Nanoleakage in hybrid layer and acid-base resistant zone at the adhesive/dentin interface. Microsc Microanal. 2015;21(5):1271–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Inoue G, Nikaido T, Foxton RM, Tagami J. The acid-base resistant zone in three dentin bonding systems. Dent Mater J. 2009;28(6):717–21.CrossRefPubMedGoogle Scholar
  51. 51.
    Inoue G, Tsuchiya S, Nikaido T, Foxton RM, Tagami J. Morphological and mechanical characterization of the acid-base resistant zone at the adhesive-dentin interface of intact and caries-affected dentin. Oper Dent. 2006;31(4):466–72.CrossRefPubMedGoogle Scholar
  52. 52.
    Yoshimine N, Shimada Y, Tagami J, Sadr A. Interfacial adaptation of composite restorations before and after light curing: effects of adhesive and filling technique. J Adhes Dent. 2015;17(4):329–36.PubMedGoogle Scholar
  53. 53.
    Han SH, Sadr A, Tagami J, Park SH. Non-destructive evaluation of an internal adaptation of resin composite restoration with swept-source optical coherence tomography and micro-CT. Dent Mater. 2016;32(1):e1–7.CrossRefPubMedGoogle Scholar

Copyright information

© The Society of The Nippon Dental University 2018

Authors and Affiliations

  • Turki A. Bakhsh
    • 1
    • 2
  • Nour H. Altouki
    • 3
  • Lina S. Baeesa
    • 3
  • Ruba A. Baamer
    • 3
  • Reema M. Alshebany
    • 3
  • Zuhair Natto
    • 4
  • Adnan Nasir
    • 3
  • Alaa Turkistani
    • 1
  • Fatin Hasanain
    • 1
  • Ghada H. Naguib
    • 5
    • 6
  1. 1.Operative Dentistry Department, Faculty of DentistryKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Dental DepartmentInternational Medical CenterJeddahSaudi Arabia
  3. 3.Faculty of DentistryKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Department of Dental Public Health, Faculty of DentistryKing Abdulaziz UniversityJeddahSaudi Arabia
  5. 5.Division of Biomaterials, Department of Operative Dentistry, Faculty of DentistryKing Abdulaziz UniversityJeddahSaudi Arabia
  6. 6.Department of Oral Biology, Faculty of DentistryCairo UniversityCairoEgypt

Personalised recommendations