, Volume 107, Issue 1, pp 54–63 | Cite as

Evaluation of the biocompatibility of root canal sealers on human periodontal ligament cells ex vivo

  • Susanne Jung
  • Viktor Libricht
  • Sonja Sielker
  • Marcel R. Hanisch
  • Edgar Schäfer
  • Till DammaschkeEmail author
Original Article


The aim of this study was to evaluate the biocompatibility of two comparatively new calcium silicate containing sealers (MTA-Fillapex and BioRoot-RCS) with that of two established sealers (AH-Plus, epoxy resin-based; Pulp-Canal-Sealer, zinc oxide eugenol containing). Human periodontal ligament cells (PDL-cells) were brought in contact with eluates from freshly mixed and set sealer. The sealers were mixed strictly according to the manufacturers’ instructions and identically samples were produced. 1:1, 1:2, and 1:10 dilutions of sealers extract were used. Extracts from freshly mixed sealer were added to the PDL-cells on day one to simulate a clinical scenario. Subsequently, at 24 h, 7, 14, and 21 days extracts form set sealers were used for PDL-cell culturing. PDL-cell viability was analyzed by living-cell-count, MTT-assay, and living/dead-staining, cytotoxicity by LDH-assay, and changes by Richardson-staining. All data were statistically evaluated by one way ANOVA and a posthoc analysis with Bonferroni-Holm testing (p < 0.05). In contact with BioRoot-RCS a regeneration of the PDL-cells were observed over time. This sealer showed the lowest toxicity in a freshly mixed and set state (p < 0.05). MTA-Fillapex and Pulp-Canal-Sealer were cytotoxic in a fresh as well as in a set state, whereas AH-Plus was cytotoxic in a freshly mixed state, but not when the sealer was set. BioRoot-RCS is biocompatible and bioactive because it seems to have a positive influence on the PDL-cell metabolism. Pulp Canal Sealer and MTA-Fillapex showed no biocompatibility in contact with PDL-cells at all. Freshly mixed AH Plus is less biocompatible on PDL than in a set state.


Biocompatibility Calcium silicate Cell test Periodontal ligament cells Root canal sealer 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Suresh Chandra B, Gopikrishna V. Obturation of the radicular space. In: Suresh Chandra B, Gopikrishna V, editors. Grossman’s Endodntic Practice. 13th ed. New Dehli: Wolters Kluwer Health; 2014. pp. 343–73.Google Scholar
  2. 2.
    Johnson W, Kulild JC, Tay F. Obturation of the cleaned and shaped root canal system. In: Hargreaves KH, Berman LH, editors. Cohen’s Pathway of the Pulp. 11th ed. St. Louis: Elsevier; 2016. pp. 280–323.Google Scholar
  3. 3.
    Granchi D, Stea S, Ciapetti G, Cavedagna D, Stea S, Pizzoferrato A. Endodontic cements induce alterations in the cell cycle of in vitro cultured osteoblasts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;79:359–66.CrossRefGoogle Scholar
  4. 4.
    Dammaschke T, Witt M, Ott K, Schäfer E. Scanning electron microscopic investigation of incidence, location, and size of accessory foramina in primary and permanent molars. Quintessence Int. 2004;35:699–705.Google Scholar
  5. 5.
    Geurtsen W. Biocompatibility of root canal filling materials. Aust Endod J. 2001;27:12–21.CrossRefGoogle Scholar
  6. 6.
    Braga JM, Oliveira RR, de Castro Mantins R, Vieira LQ, Sobrinho AP. Assessment of the cytotoxicity of a mineral trioxide aggregate-based sealer with respect to macrophage activity. Dent Traumatol. 2015;31:390–5.CrossRefGoogle Scholar
  7. 7.
    Tepel J, Darwisch el Sawaf M, Hoppe W. Reaction of inflamed periapical tissue to intracanal medicaments and root canal sealers. Endod Dent Traumatol. 1994;10:233–8.CrossRefGoogle Scholar
  8. 8.
    Costa F, Sousa Gomes P, Fernandes MH. Osteogenic and angiogenic response to calcium silicate-based endodontic sealers. J Endod. 2016;42:113–9.CrossRefGoogle Scholar
  9. 9.
    Spångberg L. Biological effects of root canal filling materials. 7. Reaction of bony tissue to implanted root canal filling material in guinea pigs. Odontol Tidskr. 1969;77:133–59.Google Scholar
  10. 10.
    Parirokh M, Torabinejad M. Calcium silicate-based cements. In: Torabinejad M, editor. Mineral Trioxide Aggregate. Properties and clinical applications. Ames: Wiley Blackwell; 2014. pp. 281–332.Google Scholar
  11. 11.
    Xuereb M, Vella P, Damidot D, Sammut CV, Camilleri J. In situ assessment of the setting of tricalcium silicate-based sealers using a dentin pressure model. J Endod. 2015;41:111–24.CrossRefGoogle Scholar
  12. 12.
    Szczurko G, Pawińska M, Łuczaj-Cepowicz KA, Marczuk-Kolada G, Hołownia A. Effect of root canal sealers on human periodontal ligament fibroblast viability: ex vivo study. Odontology. 2018;106:245–56.CrossRefGoogle Scholar
  13. 13.
    Huang FM, Chang YC. Cytotoxicity of resin-based restorative materials on human pulp cell cultures. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;94:361–5.CrossRefGoogle Scholar
  14. 14.
    Jung S, Mielert J, Kleinheinz J, Dammaschke T. Human oral cells’ response to different endodontic restorative materials: an in vitro study. Head Face Med. 2014;10:55. Scholar
  15. 15.
    Jung S, Sielker S, Hanisch MR, Libricht V, Schäfer E, Dammaschke T. Cytotoxic effects of four different root canal sealers on human osteoblasts. PLoS One. 2018;13:e0194467. Scholar
  16. 16.
    Willershausen I, Callaway A, Briseño B, Willershausen B. In vitro analysis of the cytotoxicity and the antimicrobial effect of four endodontic sealers. Head Face Med. 2011;7:15. Scholar
  17. 17.
    Camps J, Jeanneau C, El Ayachi I, Laurent P, About I. Bioactivity of a calcium silicate-based endodontic cement (BioRoot RCS): interaction with human periodontal ligament cells in vitro. J Endod. 2015;41:1469–73.CrossRefGoogle Scholar
  18. 18.
    Collado-González M, García-Bernal D, Oñate-Sánchez RE, Ortolani-Seltenerich PS, Lozano A, Forner L, Llena C, Rodríguez-Lozano FJ. Biocompatibility of three new calcium silicate-based endodontic sealers on human periodontal ligament stem cells. Int Endod J. 2017;50:875–84.CrossRefGoogle Scholar
  19. 19.
    Schäfer E, Olthoff G. Effect of three different sealers on the sealing ability of both Thermafil obturators and cold laterally compacted gutta-percha. J Endod. 2002;28:638–42.CrossRefGoogle Scholar
  20. 20.
    Schäfer E, Zandbiglari T. Solubility of root canal sealers in water and artificial saliva. Int Endod J. 2003;36:660–9.CrossRefGoogle Scholar
  21. 21.
    Schäfer E, Bering N, Bürklein S. Selected physicochemical properties of AH-Plus, EndoREZ and RealSeal SE root canal sealers. Odontology. 2015;103:61–5.CrossRefGoogle Scholar
  22. 22.
    Collado-González M, Tomás-Catalá CJ, Oñate-Sánchez RE, Moraleda JM, Rodríguez-Lozano J. Cytotoxicity of GuttaFlow Bioseal, GuttaFlow 2, MTA Fillapex, and AH Plus on human periodontal ligament stem cells. J Endod. 2017;43:816–22.CrossRefGoogle Scholar
  23. 23.
    Schweikl H, Schmalz G, Federlin M. Mutagenicity of the root canal sealer AH Plus in the Ames test. Clin Oral Investig. 1998;2:125–9.CrossRefGoogle Scholar
  24. 24.
    Azar NG, Heidari M, Bahrami ZS, Shokri F. In vitro cytotoxicity of a new epoxy resin root canal sealer. J Endod. 2000;26:462–6.CrossRefGoogle Scholar
  25. 25.
    Sousa CJA, Montes CRM, Pasco EA, Loyola AM, Versiami MA. Comparison of the intraosseous biocompatibility of AH Plus, Endo REZ, and Epiphany root canal sealer. J Endod. 2006;32:656–62.CrossRefGoogle Scholar
  26. 26.
    Zatloukal K, Roth J, Denk H. Zell- und Gewebereaktionen. In: Böcker W, Denk H, Heitz PU, editors. Pathologie. 3rd ed. München: Urban & Fischer; 2004. pp. 39–76.Google Scholar
  27. 27.
    Schweikl H, Schmalz G, Spruss T. The induction of micronuclei in vitro by unpolymerized resin monomers. J Dent Res. 2001;80:1615–20.CrossRefGoogle Scholar
  28. 28.
    Cohen BI, Pagnillo MK, Musikant BL, Deutsch AS. Formaldehyde from endodontic materials. Oral Health. 1998;88:37–9.Google Scholar
  29. 29.
    Eldeniz AU, Mustafa K, Ørstavik D, Dahl JE. Cytotoxicity of new resin-, calcium hydroxide- and silicone-based root canal sealers on fibroblasts derived from human gingiva and L929 cell lines. Int Endod J. 2007;40:329–37.CrossRefGoogle Scholar
  30. 30.
    Zhou H-M, Du T-F, Shen Y, Wang Z-J, Zheng Y-F, Haapasalo M. In vitro cytotoxicity of calcium silicate-containing endodontic sealers. J Endod. 2015;41:56–61.CrossRefGoogle Scholar
  31. 31.
    Silva EJ, Accorsi-Mendonça T, Pedrosa AC, Granjeiro JM, Zaia AA. Long-term cytotoxicity, pH and dissolution rate of AH Plus and MTA Fillapex. Braz Dent J. 2016;27:419–23.CrossRefGoogle Scholar
  32. 32.
    Silva EJ, Rosa TP, Herrera DR, Jacinto RC, Gomes BP, Zaia AA. Evaluation of cytotoxicity and physicochemical properties of calcium silicate-based endodontic sealer MTA Fillapex. J Endod. 2013;39:274–7.CrossRefGoogle Scholar
  33. 33.
    Al-Hiyasat AS, Tayyar M, Darmani H. Cytotoxicity evaluation of various resin based root canal sealers. Int Endod J. 2010;43:148–53.CrossRefGoogle Scholar
  34. 34.
    Eldeniz AU, Shehata M, Högg C, Reichl FX. DNA double-strand breaks caused by new and contemporary endodontic sealers. Int Endod J. 2016;49:1141–51.CrossRefGoogle Scholar
  35. 35.
    Dammaschke T, Schneider U, Stratmann U, Yoo J-M, Schäfer E. Reaction of inflamed periapical tissue to three different root canal sealers. Dtsch Zahnärztl Z. 2006;61:15–26.Google Scholar
  36. 36.
    Rodríguez-Lozano FJ, García-Bernal D, Oñate-Sánchez RE, Ortolani-Seltenerich PS, Forner L, Moraleda JM. Evaluation of cytocompatibility of calcium silicate-based endodontic sealers and their effects on the biological responses of mesenchymal dental stem cells. Int Endod J. 2017;50:67–76.CrossRefGoogle Scholar
  37. 37.
    Mestieri LB, Gomes-Cornélio AL, Rodrigues EM, Salles LP, Bosso-Martelo R, Guerreiro-Tanomaru JM, Tanomaru-Filho M. Biocompatibility and bioactivity of calcium silicate-based endodontic sealers in human dental pulp cells. J Appl Oral Sci. 2015;23:467–71.CrossRefGoogle Scholar
  38. 38.
    Scelza MZ, Linhares AB, da Silva LE, Granjeiro JM, Alves GG. A multiparametric assay to compare the cytotoxicity of endodontic sealers with primary human osteoblasts. Int Endod J. 2012;45:12–8.CrossRefGoogle Scholar
  39. 39.
    Assmann E, Böttcher DE, Hoppe CB, Grecca FS, Kopper PM. Evaluation of bone tissue response to a sealer containing mineral trioxide aggregate. J Endod. 2015;41:62–6.CrossRefGoogle Scholar
  40. 40.
    Yoshino P, Nishiyama CK, da Silva Modena KC, Santos CF, Sipert CR. In vitro cytotoxicity of white MTA, MTA Fillapex® and Portland cement on human periodontal ligament fibroblasts. Braz Dent J. 2013;24:111–6.CrossRefGoogle Scholar
  41. 41.
    Dimitrova-Nakov S, Uzunoglu E, Ardila-Osorio H, Baudry A, Richard G, Kellermann O, Goldberg M. In vitro bioactivity of BioRoot™ RCS, via A4 mouse pulp stem cells. Dent Mater. 2015;31:1290–7.CrossRefGoogle Scholar
  42. 42.
    Prüllage R-K, Urban K, Schäfer E, Dammaschke T. Material Properties of a tricalcium silicate-containing, a mineral trioxide aggregate-containing, and an epoxy resin-based root canal sealer. J Endod. 2016;42:1784–8.CrossRefGoogle Scholar

Copyright information

© The Society of The Nippon Dental University 2018

Authors and Affiliations

  1. 1.Department of Cranio-Maxillofacial Surgery, Research Unit Vascular Biology of Oral Structures (VABOS)University Hospital MünsterMunsterGermany
  2. 2.Department of Periodontology and Operative DentistryWestphalian Wilhelms-UniversityMunsterGermany
  3. 3.Central Interdisciplinary Ambulance in the School of DentistryMunsterGermany

Personalised recommendations