Advertisement

Odontology

, Volume 107, Issue 1, pp 37–45 | Cite as

Generation and histomorphometric evaluation of a novel fluvastatin-containing poly(lactic-co-glycolic acid) membrane for guided bone regeneration

  • Haomiao Zhang
  • Yasuko MoriyamaEmail author
  • Yasunori Ayukawa
  • Yunia Dwi Rakhmatia
  • Yoko Tomita
  • Noriyuki Yasunami
  • Kiyoshi Koyano
Original Article
  • 83 Downloads

Abstract

The purpose of this study was to evaluate the effects of a poly(lactic-co-glycolic acid) (PLGA) membrane containing fluvastatin on bone regeneration at bone defects in rat calvaria and tibia for possible use as a guided bone regeneration (GBR) membrane. PLGA and fluvastatin-containing PLGA (PLGA–fluvastatin) membranes were prepared and mechanical properties were evaluated. Standardized bony defects were created in rat calvaria and the right tibia, and covered with a PLGA or PLGA–fluvastatin membrane. Bone regeneration was evaluated using image analysis based on histologic examination. At 4 and 8 weeks after membrane implantation, the PLGA–fluvastatin group displayed enhanced new bone formation around the edge of the defect compared with the PLGA membrane group in the calvarial model. Thick bone regeneration was observed in tibia-defect sites in the PLGA–fluvastatin membrane group. These results suggest that the PLGA-containing fluvastatin membrane prepared in this study may potentially be used as a GBR membrane.

Keywords

Guided bone regeneration (GBR) Poly(lactic-co-glycolic acid) (PLGA) membrane Statin Osteoconductive Histomorphometric 

Notes

Acknowledgements

This study was supported in part by KAKENHI (no. 15H06490) from the Japan Society for the Promotion of Science.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Lee SW, Kim SG. Membrane for the guided bone regeneration. Maxillofac Plast Reconstr Surg. 2014;36(6):239–46.CrossRefGoogle Scholar
  2. 2.
    Rakhmatia YD, Ayukawa Y, Furuhashi A, et al. Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. J Prosthodont Res. 2013;57:3–14.CrossRefGoogle Scholar
  3. 3.
    Scantlebury TV. 1982–1992: a decade of technology development for guided tissue regeneration. J Periodontol. 1993;64:1129–37.CrossRefGoogle Scholar
  4. 4.
    Dimitriou R, Mataliotakis GI, Calori GM, et al. The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence. BMC Med. 2012;10:81.CrossRefGoogle Scholar
  5. 5.
    Liu J, Kerns DG. Mechanisms of guided bone regeneration: a review. Open Dent J. 2014;8(Suppl 1-M3):56–65.CrossRefGoogle Scholar
  6. 6.
    Bottino MC, Thomas V, Schmidt G, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective. Dent Mater. 2012;28:703–21.CrossRefGoogle Scholar
  7. 7.
    Lu JM, Wang X, Marin-Muller C, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009;9(4):325–41.CrossRefGoogle Scholar
  8. 8.
    Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3:1377–97.CrossRefGoogle Scholar
  9. 9.
    Gentile P, Chiono V, Carmagnola I, et al. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15:3640–59.CrossRefGoogle Scholar
  10. 10.
    Cho WJ, Kim JH, Oh SH, et al. Hydrophilized polycaprolactone nanofiber mesh-embedded poly(glycolic-co-lactic acid) membrane for effective guided bone regeneration. J Biomed Mater Res Part A 2008; 91:400–7.Google Scholar
  11. 11.
    Yonamine Y, Matsuyama T, Sonomura T, et al. Effectable application of vascular endothelial growth factor to critical sized rat calvaria defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109:225–31.CrossRefGoogle Scholar
  12. 12.
    Mundy G, Garrett R, Harris S, et al. Stimulation of bone formation in vitro and rodents by statins. Science. 1999;18:53–7.Google Scholar
  13. 13.
    Ayukawa Y, Okamura A, Koyano K. Simvastatin promotes osteogenesis around titanium implants. A histological and histometrical study in rats. Clin Oral Implant Res. 2004;15:346–50.CrossRefGoogle Scholar
  14. 14.
    Moriyama Y, Ayukawa Y, Ogino Y, et al. Local application of fluvastatin improves peri-implant bone quantity and mechanical properities: a rodent study. Acta Biomater. 2010;6:1610–18.CrossRefGoogle Scholar
  15. 15.
    Jinno Y, Ayukawa Y, Ogino Y, et al. Vertical bone augmentation with fluvastatin in an injectable delivery system: a rat study. Clin Oral Implant Res. 2009;20:756–60.CrossRefGoogle Scholar
  16. 16.
    Masuzaki T, Ayukawa Y, Moriyama Y, et al. The effect of a single remote injection of statin-impregnated poly(lactic-co-glycolic acid) microspheres on osteogenesis around titanium implants in rat tibia. Biomater. 2010;31:3327–34.CrossRefGoogle Scholar
  17. 17.
    Yasunami N, Ayukawa Y, Furuhashi A, et al. Acceleration of hard and soft tissue healing in the oral cavity by a single transmucosal injection of fluvastatin-impregnated poly(lactic-co-glycolic acid) microspheres. An in vitro and rodent in vivo study. Biomed Mater. 2016;11:015001.CrossRefGoogle Scholar
  18. 18.
    Rakhmatia YD, Ayukawa Y, Furuhashi A, et al. Microcomputed tomographic and histomorphometric analyses of novel titanium mesh membranes for guided bone regeneration: a study in rat calvarial defect. Int J Oral Maxillofac Implant. 2014;29:826–35.CrossRefGoogle Scholar
  19. 19.
    Sousa BGB, Pedrotti G, Sponchiado AP, et al. Analysis of tensile strength of poly(lactic-co-glycolic acid) (PLGA) membranes used for guided tissue regeneration. RSBO. 2014;11(1):59–65.Google Scholar
  20. 20.
    Ueyama Y, Ishikawa K, Mano T, et al. Usefulness as guided bone regeneration membrane of the alginate membrane. Biomater. 2002;23:2027–33.CrossRefGoogle Scholar
  21. 21.
    Nyan M, Sato D, Kihara H, et al. Effects of the combination with α-tricalcium phosphate and simvastatin on bone regeneration. Clin Oral Implant Res 2009; 20:280–87.CrossRefGoogle Scholar
  22. 22.
    Hong KS, Kim EC, Bang SH, et al. Bone regeneration by bioactive hybrid membrane containing FGF2 within rat calvarium. J Biomed Mater Res Part A. 2010;94(4):1187–94.Google Scholar
  23. 23.
    Lee EJ, Shin DS, Kim HE, et al. Membrane of hybrid chitosan-silica xerogel for guided bone regeneration. Biomater. 2009;30:743–50.CrossRefGoogle Scholar

Copyright information

© The Society of The Nippon Dental University 2018

Authors and Affiliations

  • Haomiao Zhang
    • 1
  • Yasuko Moriyama
    • 1
    Email author
  • Yasunori Ayukawa
    • 1
  • Yunia Dwi Rakhmatia
    • 1
  • Yoko Tomita
    • 1
  • Noriyuki Yasunami
    • 1
  • Kiyoshi Koyano
    • 1
  1. 1.Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental ScienceKyushu UniversityFukuokaJapan

Personalised recommendations