, Volume 106, Issue 4, pp 398–407 | Cite as

Comparison of three block bone substitutes for bone regeneration: long-term observation in the beagle dog

  • Kosaku SawadaEmail author
  • Ken Nakahara
  • Maiko Haga-Tsujimura
  • Tateyuki Iizuka
  • Masako Fujioka-Kobayashi
  • Kensuke Igarashi
  • Nikola Saulacic
Original Article


This study aimed to evaluate the impact of three types of block bone substitute material on bone formation and graft resorption in vivo. Standardized bone defects (n = 4 defects/animal) were created in the calvaria of nine dogs. Block bone substitutes made of deproteinized bovine bone mineral (DBBM), beta-tricalcium phosphate (β-TCP) and a mixture alpha-TCP and hydroxyapatite (α-TCP/HA) were inserted into the bone defects. A fourth defect was left untreated (empty). All sites were covered with a collagenous membrane. Block biopsies were harvested at 3, 6 and 12 months post-implantation and analyzed by micro-CT and histology. Biomaterial absorption was minimal and incorporation within the defect margin was good for all biomaterials. However, β-TCP demonstrated a relatively greater volume of new bone formation and less residual material volume when compared with DBBM and α-TCP/HA. Conversely, α-TCP/HA showed higher osteoconductive potential and a greater new bone area compared with the other two biomaterials. The block bone substitutes used in the present in vivo study showed advantageous in terms of maintenance of their original form in bony defect. However, the positive impact of all biomaterials on new bone formation and replacement of bone was minor even at 12 months. These findings indicate that block bone substitutes are not well suited to vertical bone augmentation. Further investigations are required to improve the insufficient new bone volume for promising clinical results.


Block bone substitutes Deproteinized bovine bone mineral Alpha-tricalcium phosphate Beta-tricalcium phosphate Canine calvaria 



We thank Elizabeth Finnie, PhD, from Edanz Group ( for editing a draft of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Supplementary material

10266_2018_352_MOESM1_ESM.tif (4 mb)
Supplemental Fig. 1: Micro-CT images and representative photomicrographs of the bone defect (middle sections) in the β-TCP samples without osseoconduction between the graft materials and host bone at (a) 3 months and (b) 12 months. A soft tissue capsule is observed covering the β-TCP blocks (TIFF 4123 kb)


  1. 1.
    Ekfeldt A, Christiansson U, Eriksson T, Linden U, Lundqvist S, Rundcrantz T, Johansson LA, Nilner K, Billstrom C. A retrospective analysis of factors associated with multiple implant failures in maxillae. Clin Oral Implants Res. 2001;12:462–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Javed F, Ahmed HB, Crespi R, Romanos GE. Role of primary stability for successful osseointegration of dental implants: factors of influence and evaluation. Interv Med Appl Sci. 2013;5:162–7.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Aloy-Prósper A, Maestre-Ferrin L, Peñarrocha-Oltra D, Peñarrocha-Diago M. Bone regeneration using particulate grafts: an update. Med Oral Patol Oral Cir Bucal. 2011;16:e210–4.CrossRefPubMedGoogle Scholar
  4. 4.
    Barone A, Covani U. Maxillary alveolar ridge reconstruction with nonvascularized autogenous block bone: clinical results. J Oral Maxillofac Surg. 2007;65:2039–46.CrossRefPubMedGoogle Scholar
  5. 5.
    Keating JF, McQueen MM. Substitutes for autologous bone graft in orthopaedic trauma. J Bone Jt Surg Br. 2001;83:3–8.CrossRefGoogle Scholar
  6. 6.
    Nkenke E, Radespiel-Tröger M, Wiltfang J, Schultze-Mosgau S, Winkler G, Neukam FW. Morbidity of harvesting of retromolar bone grafts: a prospective study. Clin Oral Implants Res. 2002;13:514–21.CrossRefPubMedGoogle Scholar
  7. 7.
    Norton MR, Odell EW, Thompson ID, Cook RJ. Efficacy of bovine bone mineral for alveolar augmentation: a human histologic study. Clin Oral Implants Res. 2003;14:775–83.CrossRefPubMedGoogle Scholar
  8. 8.
    Stavropoulos A, Kostopoulos L, Mardas N, Nyengaard JR, Karring T. Deproteinized bovine bone used as an adjunct to guided bone augmentation: an experimental study in the rat. Clin Implant Dent Relat Res. 2001;3:156–65.CrossRefPubMedGoogle Scholar
  9. 9.
    Pinholt EM, Bang G, Haanaes HR. Alveolar ridge augmentation in rats by Bio-Oss. Scand J Dent Res. 1991;99:154–61.PubMedGoogle Scholar
  10. 10.
    Schmitt C, Lutz R, Doering H, Lell M, Ratky J, Schlegel KA. Bio-Oss® blocks combined with BMP-2 and VEGF for the regeneration of bony defects and vertical augmentation. Clin Oral Implants Res. 2011;24:450–60.CrossRefPubMedGoogle Scholar
  11. 11.
    Klinge B, Alberius P, Isaksson S, Jönsson J. Osseous response to implanted natural bone mineral and synthetic hydroxylapatite ceramic in the repair of experimental skull bone defects. J Oral Maxillofac Surg. 1992;50:241–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Zitzmann NU, Schärer P, Marinello CP, Schüpbach P, Berglundh T. Alveolar ridge augmentation with Bio-Oss: a histologic study in humans. Int J Periodontics Restor Dent. 2001;21:288–95.Google Scholar
  13. 13.
    Sartori S, Silvestri M, Forni F, Icaro Cornaglia A, Tesei P, Cattaneo V. Ten-year follow-up in a maxillary sinus augmentation using anorganic bovine bone (Bio-Oss). A case report with histomorphometric evaluation. Clin Oral Implants Res. 2003;14:369–72.CrossRefPubMedGoogle Scholar
  14. 14.
    Valentini P, Abensur D, Densari D, Graziani JN, Hämmerle C. Histological evaluation of Bio-Oss in a 2-stage sinus floor elevation and implantation procedure. A human case report. Clin Oral Implants Res. 1998;9:59–64.CrossRefPubMedGoogle Scholar
  15. 15.
    Torres J, Tamimi F, Alkhraisat MH, Prados-Frutos JC, Rastikerdar E, Gbureck U, Barralet JE, López-Cabarcos E. Vertical bone augmentation with 3D-synthetic monetite blocks in the rabbit calvaria. J Clin Periodontol. 2011;38:1147–53.CrossRefPubMedGoogle Scholar
  16. 16.
    Hwang JW, Park JS, Lee JS, Jung UW, Kim CS, Cho KS, Lee YK, Choi SH. Comparative evaluation of three calcium phosphate synthetic block bone graft materials for bone regeneration in rabbit calvaria. J Biomed Mater Res B Appl Biomater. 2012;100:2044–52.CrossRefPubMedGoogle Scholar
  17. 17.
    Kim JW, Jung IH, Lee KI, Jung UW, Kim CS, Choi SH, Cho KS, Yun JH. Volumetric bone regenerative efficacy of biphasic calcium phosphate–collagen composite block loaded with rhBMP-2 in vertical bone augmentation model of a rabbit calvarium. J Biomed Mater Res A. 2012;100:3304–13.CrossRefPubMedGoogle Scholar
  18. 18.
    Carrodeguas RG, De Aza S. α-Tricalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater. 2011;7:3536–46.CrossRefPubMedGoogle Scholar
  19. 19.
    Zerbo IR, Zijderveld SA, de Boer A, Bronckers AL, de Lange G, ten Bruggenkate CM, Burger EH. Histomorphometry of human sinus floor augmentation using a porous beta-tricalcium phosphate: a prospective study. Clin Oral Implants Res. 2004;15:724–32.CrossRefPubMedGoogle Scholar
  20. 20.
    Hirota M, Matsui Y, Mizuki N, Kishi T, Watanuki K, Ozawa T, Fukui T, Shoji S, Adachi M, Monden Y, Iwai T, Tohnai I. Combination with allogenic bone reduces early absorption of beta-tricalcium phosphate (beta-TCP) and enhances the role as a bone regeneration scaffold. Experimental animal study in rat mandibular bone defects. Dent Mater J. 2009;28:153–61.CrossRefPubMedGoogle Scholar
  21. 21.
    Yamada M, Shiota M, Yamashita Y, Kasugai S. Histological and histomorphometrical comparative study of the degradation and osteoconductive characteristics of α- and β-tricalcium phosphate in block grafts. J Biomed Mater Res B Appl Biomater. 2007;82:1139–48.Google Scholar
  22. 22.
    Geesink RG, de Groot K, Klein CP. Bonding of bone to apatite-coated implants. J Bone Jt Surg Br. 1988;70:17–22.CrossRefGoogle Scholar
  23. 23.
    Hanawa T, Kamiura Y, Yamamoto S, Kohgo T, Amemiya A, Ukai H, Murakami K, Asaoka K. Early bone formation around calcium-ion-implanted titanium inserted into rat tibia. J Biomed Mater Res. 1997;36:131–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Habibovic P, Yuan H, van der Valk CM, Meijer G, van Blitterswijk CA, de Groot K. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials. 2005;26:3565–75.CrossRefPubMedGoogle Scholar
  25. 25.
    Ehara A, Ogata K, Imazato S, Ebisu S, Nakano T, Umakoshi Y. Effects of alpha-TCP and TetCP on MC3T3-E1 proliferation, differentiation and mineralization. Biomaterials. 2003;24:831–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Carrel JP, Wiskott A, Moussa M, Rieder P, Scherrer S, Durual S. A 3D printed TCP/HA structure as a new osteoconductive scaffold for vertical bone augmentation. Clin Oral Implants Res. 2016;27:55–62.CrossRefPubMedGoogle Scholar
  27. 27.
    Carrel JP, Wiskott A, Scherrer S, Durual S. Large bone vertical augmentation using a three-dimensional printed TCP/HA bone graft: a pilot study in dog mandible. Clin Implant Dent Relat Res. 2016;18:1183–92.CrossRefPubMedGoogle Scholar
  28. 28.
    Salyer KE, Bardach J, Squier CA, Gendler E, Kelly KM. Cranioplasty in the growing canine skull using demineralized perforated bone. Plast Reconstr Surg. 1995;96:770–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Fuji T, Anada T, Honda Y, Shiwaku Y, Koike H, Kamakura S, Sasaki K, Suzuki O. Octacalcium phosphate-precipitated alginate scaffold for bone regeneration. Tissue Eng Part A. 2009;15:3525–35.CrossRefPubMedGoogle Scholar
  30. 30.
    Prolo DJ, Pedrotti PW, Burres KP, Oklund S. Superior osteogenesis in transplanted allogeneic canine skull following chemical sterilization. Clin Orthop Relat Res. 1982;168:230–42.Google Scholar
  31. 31.
    Urist MR, Nilsson O, Rasmussen J, Hirota W, Lovell T, Schmalzreid T, Finerman GA. Bone regeneration under the influence of a bone morphogenetic protein (BMP) beta tricalcium phosphate (TCP) composite in skull trephine defects in dogs. Clin Orthop Relat Res. 1987;214:295–304.Google Scholar
  32. 32.
    Sohn JY, Park JC, Um YJ, Jung UW, Kim CS, Cho KS, Choi SH. Spontaneous healing capacity of rabbit cranial defects of various sizes. J Periodontal Implant Sci. 2010;40:180–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Rojbani H, Nyan M, Ohya K, Kasugai S. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. J Biomed Mater Res A. 2011;98:488–98.CrossRefPubMedGoogle Scholar
  34. 34.
    Yip I, Ma L, Mattheos N, Dard M, Lang NP. Defect healing with various bone substitutes. Clin Oral Implants Res. 2015;26:606–14.CrossRefPubMedGoogle Scholar

Copyright information

© The Society of The Nippon Dental University 2018

Authors and Affiliations

  • Kosaku Sawada
    • 1
    Email author
  • Ken Nakahara
    • 1
  • Maiko Haga-Tsujimura
    • 2
  • Tateyuki Iizuka
    • 3
  • Masako Fujioka-Kobayashi
    • 3
  • Kensuke Igarashi
    • 4
  • Nikola Saulacic
    • 3
  1. 1.Advanced Research CenterThe Nippon Dental University School of Life Dentistry at NiigataNiigataJapan
  2. 2.Department of HistologyThe Nippon Dental University School of Life Dentistry at NiigataNiigataJapan
  3. 3.Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
  4. 4.Department of Life Science DentistryThe Nippon Dental UniversityNiigataJapan

Personalised recommendations