Advertisement

Odontology

, Volume 103, Issue 2, pp 117–125 | Cite as

Gene networks, occlusal clocks, and functional patches: new understanding of pattern and process in the evolution of the dentition

  • P. David Polly
Review Article

Abstract

Our understanding of the evolution of the dentition has been transformed by advances in the developmental biology, genetics, and functional morphology of teeth, as well as the methods available for studying tooth form and function. The hierarchical complexity of dental developmental genetics combined with dynamic effects of cells and tissues during development allow for substantial, rapid, and potentially non-linear evolutionary changes. Studies of selection on tooth function in the wild and evolutionary functional comparisons both suggest that tooth function and adaptation to diets are the most important factors guiding the evolution of teeth, yet selection against random changes that produce malocclusions (selectional drift) may be an equally important factor in groups with tribosphenic dentitions. These advances are critically reviewed here.

Keywords

Occlusion Tribosphenic teeth Evolution Developmental networks 

Notes

Acknowledgments

Thanks to the editors of Odontology for inviting this review, to M. Fortelius and J. Jernvall for providing references, and for two anonymous reviewers whose comments improved the text. Philip Myers of the University of Michigan Museum of Zoology provided access to the bat specimen in Fig. 1. This paper is dedicated to Percy M. Butler, who pioneered the study of dental evolutionary developmental biology and who passed away at the age of 102, still engaged in active research on teeth, while this review was being prepared.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Osborn HF. In: Gregory WK, editor. Evolution of mammalian molar teeth to and from the triangular type. New York: Macmillan; 1907.Google Scholar
  2. 2.
    Kurtén B. On the variation and population dynamics of fossil and recent mammal populations. Acta Zool Fenn. 1953;76:1–122.Google Scholar
  3. 3.
    Butler PM. The ontogeny of molar pattern. Biol Rev. 1956;31:30–70.Google Scholar
  4. 4.
    Grüneberg H. Genes and genotypes affecting the teeth of the mouse. J Embryol Exp Morphol. 1965;14:137–59.PubMedGoogle Scholar
  5. 5.
    Peyer B. Comparative odontology. Chicago: University of Chicago Press; 1968.Google Scholar
  6. 6.
    Crompton AW. The origin of the tribosphenic molar. In: Kermack DM, Kermack KA, editors. Early Mammals. London: Academic Press; 1971. p. 65–88.Google Scholar
  7. 7.
    Alvesalo L, Tigerstedt PMA. Heritabilities of tooth dimensions. Hereditas. 1974;77:311–8.PubMedGoogle Scholar
  8. 8.
    Zhao Z, Weiss KM, Stock DW. Development and evolution of dental patterns and their genetic basis. In: Teaford MF, Smith MM, Ferguson MWJ, editors. Development, function, and evolution of teeth. Cambridge: Cambridge University Press; 2000. p. 152–72.Google Scholar
  9. 9.
    Jernvall J, Thesleff I. Tooth shape formation and tooth renewal: evolving with the same signals. Development. 2012;139:3487–97.PubMedGoogle Scholar
  10. 10.
    Jernvall J, Kettunen P, Keränen S, Thesleff I. Evidence for the role of the enamel knot as a control center in the mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene. Int J Dev Biol. 1994;38:463–9.PubMedGoogle Scholar
  11. 11.
    Jernvall J, Åberg T, Kettunen P, Keränen S, Thesleff I. The life history of an embryonic signaling center: bmp-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development. 1998;125:161–9.PubMedGoogle Scholar
  12. 12.
    Jernvall J. Mammalian molar cusp patterns: developmental mechanisms of diversity. Acta Zool Fenn. 1995;198:1–61.Google Scholar
  13. 13.
    Thesleff I, Sahlberg C. Growth factors as inductive signals regulating tooth morphogenesis. Sem Cell Dev Biol. 1996;7:185–93.Google Scholar
  14. 14.
    Salazar-Ciudad I, Jernvall J. A gene network model accounting for development and evolution of mammalian teeth. Proc Natl Acad Sci USA. 2002;99:8116–20.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Salazar-Ciudad I, Jernvall J. A computational model of teeth and the developmental origins of morphological variation. Nature. 2010;464:583–6.PubMedGoogle Scholar
  16. 16.
    Trapani J, Yamamoto Y, Stock DW. Ontogenetic transition from unicuspid to multicuspid oral dentition in a teleost fish: Astyanax mexicanus, the Mexican tetra (Ostariophysi,: Characidae). Zool J Linn Soc. 2005;145:523–38.Google Scholar
  17. 17.
    O’Connor PM, Sertich JJ, Stevens NJ, Roberts EM, Gottfried MD, Hieronymus TL, Jinnah ZA, Ridgely R, Ngasala RS, Temba J. The evolution of mammal-like crocodyliforms in the Cretaceous period of Gondwana. Nature. 2010;466:748–51.PubMedGoogle Scholar
  18. 18.
    Handrigan GR, Richman JM. Unicuspid and bicuspid tooth crown formation in squamates. J Exp Biol. 2011;316B:171–86.Google Scholar
  19. 19.
    Richman JM, Handrigan GR. Reptilian tooth development. Genesis. 2011;49:247–60.PubMedGoogle Scholar
  20. 20.
    Harjunmaa E, Seidel K, Häkkinen T, Renvoisé E, Corfe IJ, Kallonen A, Zhang ZQ, Evans AR, Mikkola ML, Salazar-Ciudad I, Klein OD, Jernvall J. Replaying evolutionary transitions from the dental fossil record. Nature. 2014;512:44–8.PubMedGoogle Scholar
  21. 21.
    Tucker AS, Matthews KL, Sharpe PT. Transformation of tooth type induced by inhibition of BMP signaling. Science. 1998;282:1136–8.PubMedGoogle Scholar
  22. 22.
    Ferguson CA, Tucker AS, Sharpe PT. Temperospatial cell interactions regulating mandibular and maxillary arch patterning. Development. 2000;124:4811–8.Google Scholar
  23. 23.
    Tucker AS, Sharpe PT. The cutting edge of mammalian development; how the embryo makes teeth. Nat Rev Genet. 2004;5:499–508.PubMedGoogle Scholar
  24. 24.
    Gingerich PD, Winkler DA. Patterns of variation and correlation in the dentition of the Red Fox, Vulpes vulpes. J Mamm. 1979;60:691–704.Google Scholar
  25. 25.
    Szuma E. Variation and correlation patterns in the dentition of the Red fox from Poland. Ann Zool Fenn. 2000;37:113–27.Google Scholar
  26. 26.
    Meiri S, Dayan T, Simberloff D. Variability and correlations in carnivore crania and dentition. Funct Ecol. 2005;19:337–43.Google Scholar
  27. 27.
    Hlusko LJ, Sage RD, Mahaney MC. Modularity in the mammalian dentition: mice and monkeys share a common dental genetic architecture. J Exp Zool B Mol Dev Evol. 2011;316B:21–49.Google Scholar
  28. 28.
    Gómez-Robles A, Polly PD. Morphological integration in the hominin dentition: evolutionary, developmental, and functional factors. Evolution. 2012;66:1024–43.PubMedGoogle Scholar
  29. 29.
    Kavanagh KD, Evans AR, Jernvall J. Predicting evolutionary patterns of mammalian teeth from development. Nature. 2007;449:427–32.PubMedGoogle Scholar
  30. 30.
    Polly PD. Evolutionary biology: development with a bite. Nature. 2007;449:413–5.PubMedGoogle Scholar
  31. 31.
    Kangas AT, Evans AR, Thesleff I, Jernvall J. Nonindependence of mammalian dental characters. Nature. 2004;432:211–4.PubMedGoogle Scholar
  32. 32.
    Hlusko LJ, Maas ML, Mahaney MC. Statistical genetics of molar cusp patterning in pedigreed baboons: implications for primate dental development and evolution. J Exp Zool B Mol Dev Evol. 2004;302B:268–83.Google Scholar
  33. 33.
    Biknevicius AR. Dental function and diet in the Carpolestidae (Primates, Plesiadapiformes). Am J Phys Anthropol. 1986;71:157–71.PubMedGoogle Scholar
  34. 34.
    Butler PM. The evolution of tooth shape and tooth function in primates. In: Teaford MF, Smith MM, Ferguson MJJ, editors. Development, function, and evolution of teeth. Cambridge: Cambridge University Press; 2000. p. 201–11.Google Scholar
  35. 35.
    Lucas PW, Peters CR. Function of postcanine tooth crown shape in mammals. In: Teaford MF, Smith MM, Ferguson MWJ, editors. Development, function, and evolution of teeth. Cambridge: Cambridge University Press; 2000. p. 282–9.Google Scholar
  36. 36.
    Teaford MF. Primate dental function and morphology revisited. In: Teaford MF, Smith MM, Ferguson WMJ, editors. Development, Function, and Evolution of Teeth. Cambridge: Cambridge University Press; 2000. p. 290–304.Google Scholar
  37. 37.
    Evans AR, Sanson GD. The tooth of perfection: functional and spatial constraints on mammalian tooth shape. Biol J Linn Soc. 2003;78:173–91.Google Scholar
  38. 38.
    Evans AR, Sanson GD. Spatial and functional modeling of carnivore and insectivore molariform teeth. J Morphol. 2006;267:649–62.PubMedGoogle Scholar
  39. 39.
    Simpson GG. Major features of evolution. New York: Columbia University Press; 1953.Google Scholar
  40. 40.
    King SJ, Arrigo-Nelson SJ, Pochron ST, Semprebon GM, Godfrey LR, Wright PC, Jernvall J. Dental senescence in a long-lived primate links infant mortality to rainfall. Proc Nat Acad Sci USA. 2004;102:16579–83.Google Scholar
  41. 41.
    King SJ, Boyer DM, Tecot S, Strait SG, Zohdy S, Blanco MB, Wright PC, Jernvall J. Lemur habitat and dental senescence in Ranomafana National Park, Madagascar. Am J Phys Anthropol. 2012;148:228–37.PubMedGoogle Scholar
  42. 42.
    Ungar PS. Reproductive fitness and tooth wear: milking as much as possible out of dental topographic analysis. Proc Natl Acad Sci USA. 2005;102:16533–4.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Bolton WA. Disharmony in tooth size and its relation to the analysis and treatment of malocclusion. Angle Orthod. 1958;28:113–30.Google Scholar
  44. 44.
    Othman S, Harradine N. Tooth size discrepancies in an orthodontic population. Angle Orthod. 2007;77:668–74.PubMedGoogle Scholar
  45. 45.
    Mills JRE. Occlusion and malocclusion of the teeth in Primates. In: Brothwell DR, editor. Dental Anthropology, vol. 5. Oxford: Pergamon Press; 1963. p. 29–51.Google Scholar
  46. 46.
    Molnar S, Molnar IM. Dental arch shape and tooth wear variability. Am J Phys Anthropol. 1990;82:385–95.PubMedGoogle Scholar
  47. 47.
    Eguchi S, Townsend GC, Richards LC, Hughes T, Kasai K. Genetic contribution to dental arch size variation in Australian twins. Arch Oral Biol. 2004;49:1015–24.PubMedGoogle Scholar
  48. 48.
    Godfrey LR, Samonds KE, Jungers WL, Sutherland MR. Dental development and Primate life histories. In: Kappeler PM, Pereira ME, editors. Primate Life Histories and Socioecology. Chicago: University of Chicago Press; 2003. p. 177–203.Google Scholar
  49. 49.
    Smith BH. Dental development as a measure of life history in primates. Evolution. 1989;43:683–8.Google Scholar
  50. 50.
    Smith BH. Life history and the evolution of human maturation. Evol Anthropol. 1992;1:134–42.Google Scholar
  51. 51.
    Dirks W, Reid DJ, Jolly CJ, Phillips-Conroy JE, Brett FL. Out of the mouths of baboons: stress, life history, and dental development in the Awash National Park hybrid zone, Ethiopia. Am J Phys Anthropol. 2002;118:239–52.PubMedGoogle Scholar
  52. 52.
    Rountrey AN, Fisher DC, Tikhonov AN, Kosintsev PA, Lazarev PA, Boeskorov G, Buigues B. Early tooth development, gestation, and season of birth in mammoths. Quat Int. 2012;255:196–205.Google Scholar
  53. 53.
    Flynn TR, Shanti RM, Levi MH, Adamo AR, Kraut RA, Trieger N. Severe odontogenic infections, Part 1: prospective report. J Oral Maxillo Surg. 2006;64:1093–103.Google Scholar
  54. 54.
    Pavlica Z, Petelin M, Juntes P, Eržen D, Crossley DA, Kalarič U. Periodontal disease burden and pathological changes in organs of dogs. J Vet Dent. 2008;25:97–105.PubMedGoogle Scholar
  55. 55.
    Ungar PS, M’kirera F. A solution to the worn tooth conundrum in primates. Proc Natl Acad Sci USA. 2006;100:3874–7.Google Scholar
  56. 56.
    Polly PD. Paleophylogeography of Sorex araneus: molar shape as a morphological marker for fossil shrews. Mammalia. 2003;68:233–43.Google Scholar
  57. 57.
    Polly PD. Paleophylogeography: the tempo of geographic differentiation in marmots (Marmota). J Mamm. 2003;84:369–84.Google Scholar
  58. 58.
    Polly PD. Phylogeographic differentiation in Sorex araneus: morphology in relation to geography and karyotype. Russ J Theriol. 2007;6:73–84.Google Scholar
  59. 59.
    Caumul R, Polly PD. Phylogenetic and environmental components of morphological variation: skull, mandible and molar shape in marmots (Marmota, Rodentia). Evolution. 2005;59:2460–72.PubMedGoogle Scholar
  60. 60.
    White TA, Searle JB. Mandible asymmetry and genetic diversity in island populations of the common shrew, Sorex araneus. J Evol Biol. 2008;21:636–41.PubMedGoogle Scholar
  61. 61.
    McGuire JL. Geometric morphometrics of vole (Microtus californicus) dentition as a new paleoclimatic proxy: shape change along geographic and climatic clines. Quat Int. 2010;212:198–205.Google Scholar
  62. 62.
    Fortelius M, Eronen JT, Jernvall J, Liu L, Pushkina D, Rinne J, Tesakov A, Vislobokova I, Zhang Z, Zhou L. Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evol Ecol Res. 2002;4:1005–16.Google Scholar
  63. 63.
    Eronen JT, Puolamäki K, Liu L, Lintulaakso K, Damuth J, Janis C, Fortelius M. Precipitation and large herbivorous mammals II: estimates from present-day communities. Evol Ecol Res. 2010;12:217–33.Google Scholar
  64. 64.
    Janis CM, Fortelius M. On the means whereby mammals achieve increased functional durability of their dentitions with special reference to limiting factors. Biol Rev. 1988;63:197–230.PubMedGoogle Scholar
  65. 65.
    Wright S. The evolution of dominance. Am Nat. 1929;63:556–61.Google Scholar
  66. 66.
    Lande R. Natural selection and random genetic drift in phenotypic evolution. Evolution. 1976;30:314–34.Google Scholar
  67. 67.
    Endler JA. Geographic variation, speciation, and clines. Princeton: Princeton University Press; 1977.Google Scholar
  68. 68.
    Searle JB, Wójcik JM. Chromosomal evolution, the case of Sorex araneus. In: Wójcik JM, Wolsan M, editors. Evolution of Shrews. Białowieża: Mammal Research Institute of the Polish Academy of Sciences; 1998. p. 173–218.Google Scholar
  69. 69.
    Polly PD. On the simulation of the evolution of morphological shape: multivariate shape under selection and drift. Palaeontol Electr. 2004;7(7A):1–28.Google Scholar
  70. 70.
    Hausser J. The Sorex of the araneus-arcticus group: do they really speciate? In: Merrit JF, Kirkland GL Jr, Rose RK editors. Advances in the Biology of Shrews. Carn Mus Nat Hist Sp Publ. 1994; 8: 295–306.Google Scholar
  71. 71.
    Polly PD, Polyakov AV, Ilyashenko VB, Onischenko SS, White TA, Bulatova NS, Pavlova S, Borodin PM, Searle JB. Phenotypic variation across chromosomal hybrid zones of the Common shrew (Sorex araneus) indicates reduced gene flow. PLoS One. 2013;8:e67455.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Polly PD. On morphological clocks and paleophylogeography: toward a timescale for Sorex hybrid zones. Genetica. 2001;112–113:339–57.PubMedGoogle Scholar
  73. 73.
    Wójcik AM, Polly PD, Sikorski MD, Wójcik JM. Selection in a cycling population: differential response among skeletal traits. Evolution. 2006;60:1925–35.PubMedGoogle Scholar
  74. 74.
    Poroshin EA, Polly PD, Wójcik JM. Climate and morphological change on decadal scales: multiannual variation in the common shrew Sorex araneus in northeast Russia. Acta Theriol. 2010;55:193–202.Google Scholar
  75. 75.
    Bookstein FL. Random walk and the existence of evolutionary rates. Paleobiology. 1987;13:446–64.Google Scholar
  76. 76.
    Felsenstein J. Phylogenies and quantitative characters. Ann Rev Ecol Syst. 1988;19:445–71.Google Scholar
  77. 77.
    Kimura M. Process leading to quasi-fixation of genes in natural populations due to random fluctuations of selection intensities. Genetics. 1954;39:280–95.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Cavalli-Sforza LL, Edwards AWF. Phylogenetic analysis: models and estimation procedures. Am J Hum Genet. 1967;19:233–57.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Felsenstein J. Inferring Phylogenies. Sunderland: Sinauer Associates; 2003.Google Scholar
  80. 80.
    Polly PD, Le Comber SC, Burland TM. On the occlusal fit of tribosphenic molars: Are we underestimating species diversity in the Mesozoic? J Mamm Evol. 2005;12:285–301.Google Scholar
  81. 81.
    Ungar PS, Grine FE, Teaford MF. Diet in early Homo: a review of the evidence and a new model of adaptive versatility. Ann Rev Anthropol. 2006;35:209–28.Google Scholar
  82. 82.
    Ungar PS, Grine FE, Teaford MF. Dental microwear and diet of the Plio-Pleistocene hominin Paranthropus boisei. PLoS One. 2008;3:e2004.Google Scholar
  83. 83.
    Popowics TE, Fortelius M. On the cutting edge: tooth blade sharpness in herbivorous and faunivorous mammals. Ann Zool Fenn. 1997;34:73–88.Google Scholar
  84. 84.
    Anderson PSL, LaBarbera M. Functional consequences of tooth design: effects of blade shape on energetics of cutting. J Exp Biol. 2008;211:3619–26.PubMedGoogle Scholar
  85. 85.
    Crompton AW, Hiiemae KM. Molar occlusion and mandibular movements during occlusion, Didelphis marsupialis. Zool J Linn Soc. 1970;49:21–47.Google Scholar
  86. 86.
    Kay RF, Hiiemae KM. Jaw movement and tooth use in recent and fossil Primates. J Phys Anthropol. 1974;40:227–56.Google Scholar
  87. 87.
    Wood CB, Conroy GC, Lucas SG. New discoveries of fossil primates from the type Torrejonian (Middle Paleocene) of New Mexico. Folia Primatol. 1979;32:1–7.PubMedGoogle Scholar
  88. 88.
    Wood CB, Clemens WA. A new specimen and a functional reassociation of the molar dentition of Batodon tenuis (Placentalia: Incertae sedis), latest Cretaceous (Lancian), North America. Bull Mus Comp Zool. 2001;156:99–118.Google Scholar
  89. 89.
    Bookstein FL. Morphometric Tools for Landmark Data. Cambridge: Cambridge University Press; 1991. p. 435.Google Scholar
  90. 90.
    Vaughan N. The diets of British bats (Chiroptera). Mamm Rev. 1997;27:77–94.Google Scholar
  91. 91.
    Polly PD. Development, Geography, and Sample Size in P matrix evolution: molar-shape change in island populations of Sorex araneus. Evol Dev. 2005;7:29–41.PubMedGoogle Scholar
  92. 92.
    Weishampel DB, Norman DB. Vertebrate herbivory in the Mesozoic; jaws, plants, and evolutionary metrics. Geol Soc Am Spec Pap. 1989;238:87–100.Google Scholar
  93. 93.
    Rybczynski N, Reisz RR. Earliest evidence for efficient oral processing in a terrestrial herbivore. Nature. 2001;411:684–7.PubMedGoogle Scholar
  94. 94.
    Reisz RR. Origin of dental occlusion in tetrapods: signal for terrestrial vertebrate evolution? J Exp Zool Mol Dev Evol. 2006;306B:177–261.Google Scholar
  95. 95.
    Fröbisch J. On dental occlusion and saber teeth. Science. 2011;331:1525–8.PubMedGoogle Scholar
  96. 96.
    Young MT, Brusatte SL, Beatty BL. Brandalise de Andrade M, Desojo JB. Tooth-on-tooth interlocking occlusion suggests macrophagy in the Mesozoic marine crocodylomorph Dakosaurus. Anat Rec. 2012;295:1147–58.Google Scholar
  97. 97.
    Purnell MA. Microwear on conodont elements and macrophagy in the first vertebrates. Nature. 1995;374:798–800.Google Scholar
  98. 98.
    Donoghue PCJ, Purnell MA. Mammal-like occlusion in conodonts. Paleobiology. 1999;25:58–74.Google Scholar
  99. 99.
    Weishampel DB. Evolution of jaw mechanisms in ornithopod dinosaurs. Adv Anat Embryol Cell Biol. 1984;87:1–109.PubMedGoogle Scholar
  100. 100.
    Rybczynski N, Tiarabasso A, Bloskie P, Cutherbertson R, Holliday C. A three-dimensional animation model of Edmontosaurus (Hadrosauridae) for testing chewing hypotheses. Palaeontol Electr. 2008;11(9A):1–14.Google Scholar
  101. 101.
    Barrett PM. Paleobiology of herbivorous dinosaurs. Ann Rev Earth Plan Sci. 2012;42:207–30.Google Scholar
  102. 102.
    Luo ZX. Transformation and diversification in early mammal evolution. Nature. 2007;450:1011–9.PubMedGoogle Scholar
  103. 103.
    Luo ZX, Ji Q, Yuan CX. Convergent dental adaptations in pseudo-tribosphenic and tribosphenic mammals. Nature. 2007;450:93–7.PubMedGoogle Scholar
  104. 104.
    Kielan-Jaworowska Z, Cifelli RL, Luo ZX. Mammals from the age of dinosaurs: origin, evolution, and structure. New York: Columbia University Press; 2013.Google Scholar
  105. 105.
    Rensberger JM. Occlusion model for mastication and dental wear in herbivorous mammals. J Paleontol. 1973;47:515–28.Google Scholar
  106. 106.
    Fortelius M. Functional aspects of occlusal cheek-tooth morphology in hypsodont, non-ruminant ungulates. In: Martinell J, editor. International Symposium on Concept and Methods in Paleontology; 1981. p. 153–62.Google Scholar
  107. 107.
    Fortelius M. The functional significance of wear-induced change in the occlusal morphology of herbivore cheek teeth, exemplified by Dicerorhinus etruscus upper molars. Acta Zool Fenn. 1985;170:157–8.Google Scholar
  108. 108.
    Ungar PS, Williamson M. Exploring the effects of tooth wear on functional morphology: a preliminary study using dental topographic analysis. Palaeontol Electr. 2000;3(1A):1–18.Google Scholar
  109. 109.
    Mellet JS. Carnassial rotation in a fossil carnivore. Am Mid Nat. 1969;82:287–9.Google Scholar
  110. 110.
    Asher RJ, Sánchez-Villagra MR. Locking yourself out: diversity among dentally zalambdodont theiran mammals. J Mamm Evol. 2005;12:26–282.Google Scholar
  111. 111.
    Hunter JP, Jernvall J. The hypocone as a key innovation in mammalian evolution. Proc Nat Acad Sci USA. 1995;92:10718–22.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Smith NE, Strait SG. PaleoView3D: from specimen to online digital model. Palaeontol Electr. 2004;11(11A):1–17.Google Scholar
  113. 113.
    Jones D, Evans AR, Siu K, Rayfield EJ, Donoghue PCJ. The sharpest tools in the box? Quantitative analysis of conodont element functional morphology. Proc R Soc B. 2012;279:2849–54.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Kullmer O, Banazzi S, Fiorenza L, Schulz D, Bacso S, Winzen O. Technical note: occlusal fingerprint analysis: quantification of tooth wear pattern. Am J Phys Anthropol. 2009;139:600–5.PubMedGoogle Scholar
  115. 115.
    Kullmer O, Benazzi S, Schulz D, Gunz P, Kordos L, Begun DR. Dental arch restoration using tooth macrowear patterns with application to Rudapithecus hungaricus from the Late Miocene of Rudabánya, Hungary. Hung J Hum Evol. 2013;64:151–60.Google Scholar
  116. 116.
    Schultz JA, Martin T. Function of the pretribosphenic and tribosphenic mammalian molars inferred from 3D animation. Naturwiss. 2014;101:771–81.PubMedGoogle Scholar
  117. 117.
    Benazzi S, Kullmer O, Grosse IR, Weber GW. Using occlusal wear information and finite element analysis to investigate stress distributions in human molars. J Anat. 2011;219:259–72.PubMedCentralPubMedGoogle Scholar
  118. 118.
    Gómez-Robles A, Martinón-Torres M, Bermúdez de Castro JM, Margvelashvili A, Bastir M, Arsuaga JL, Pérez-Pérez A, Estebaranz F, Martinez LM. A geometric morphometric analysis of hominin upper first molar shape. J Hum Evol. 2007;53:272–85.PubMedGoogle Scholar
  119. 119.
    Gómez-Robles A, Bermúdez de Castro JM, Arsuaga JL, Carbonell E, Polly PD. No known hominin species matches the expected dental morphology of the last common ancestor of Neanderthals and modern humans. Proc Natl Acad Sci USA. 2013;110:18196–201.PubMedCentralPubMedGoogle Scholar
  120. 120.
    Grossnickle DM, Polly PD. Mammal disparity decreases during the Cretaceous angiosperm radiation. Proc R Soc B. 2013;280:20132110.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Wilson GP. Mammals across the K/Pg boundary in northeastern Montana, USA: dental morphology and body-size patterns reveal extinction selectivity and immigrant-fueled ecospace filling. Paleobiology. 2013;39:429–69.Google Scholar
  122. 122.
    Evans AR, Wilson GP, Fortelius M, Jernvall J. High-level similarity of dentitions in carnivorans and rodents. Nature. 2007;445:78–81.PubMedGoogle Scholar
  123. 123.
    Smits PD, Evans AR. Functional constraints on tooth morphology in carnivorous mammals. BMC Evol Biol. 2012;12:146.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Boyer DM. Relief index of second mandibular molars is a correlate of diet among prosimian primates and other euarchontan mammals. J Hum Evol. 2008;55:1118–37.PubMedGoogle Scholar
  125. 125.
    Boyer DM, Evans AR, Jernvall J. Evidence of dietary differentiation among Late Paleoeocene-Early Eocene plesiadapids (Mammalia, Primates). Am J Phys Anthropol. 2010;142:194–210.PubMedGoogle Scholar
  126. 126.
    Santana SE, Strait S, Dumont ER. The better to eat you with: functional correlates of tooth structure in bats. Funct Ecol. 2011;25:839–47.Google Scholar
  127. 127.
    Wilson GP, Evans AR, Corfe IJ, Smits PD, Fortelius M, Jernvall J. Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature. 2012;483:457–60.PubMedGoogle Scholar
  128. 128.
    Weiss KW, Stock DW, Zhao Z. Dynamic interactions and the evolutionary genetics of dental patterning. Crit Rev Oral Biol Med. 1998;9:369–98.PubMedGoogle Scholar
  129. 129.
    Polly PD. Developmental dynamics and G-matrices: Can morphometric spaces be used to model evolution and development? Evol Biol. 2008;35:83–96.Google Scholar
  130. 130.
    Salazar-Ciudad I, Jernvall J. The causality horizon and developmental bases of morphological evolution. Biol Theory. 2013;8:286–92.Google Scholar

Copyright information

© The Society of The Nippon Dental University 2015

Authors and Affiliations

  1. 1.Department of Geological SciencesIndiana UniversityBloomingtonUSA
  2. 2.Department of BiologyIndiana UniversityBloomingtonUSA
  3. 3.Department of AnthropologyIndiana UniversityBloomingtonUSA

Personalised recommendations