Advertisement

Odontology

, Volume 102, Issue 2, pp 137–146 | Cite as

Roles of cathelicidins in inflammation and bone loss

  • Yuko NakamichiEmail author
  • Kanji Horibe
  • Naoyuki Takahashi
  • Nobuyuki Udagawa
Review Article

Abstract

Body surface tissues, such as the oral cavity, contact directly with the external environment and are continuously exposed to microbial insults. Cathelicidins are a family of antimicrobial peptides that are found in mammalian species. Humans and mice have only one cathelicidin. Cathelicidins are expressed in a variety of surface tissues. In addition, they are abundantly expressed in bone and bone marrow. Infectious stimuli upregulate the expression of cathelicidins, which play sentinel roles in allowing the tissues to fight against microbial challenges. Cathelicidins disrupt membranes of microorganisms and kill them. They also neutralize microbe-derived pathogens, such as lipopolysaccharide (LPS) and flagellin. Besides their antimicrobial functions, cathelicidins can also control actions of host cells, such as chemotaxis, proliferation, and cytokine production, through binding to the receptors expressed on them. LPS and flagellin induce osteoclastogenesis and the production of cathelicidins, which can in turn inhibit osteoclastogenesis. Thus, cathelicidins contribute to maintaining microbiota-host homeostasis and promoting repair responses to inflammatory insults. In this review, we describe recent findings on the multiple roles of cathelicidins in host defense. We also discuss the significance of the human cathelicidin, LL-37, as a pharmaceutical target for the treatment of inflammation and bone loss in infectious diseases, such as periodontitis.

Keywords

Cathelicidin LPS Flagellin Osteoclastogenesis Inflammation 

Notes

Conflict of interest

The authors have no conflicts of interest.

References

  1. 1.
    Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG. The human oral microbiome. J Bacteriol. 2010;192:5002–17.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Wade WG. The oral microbiome in health and disease. Pharmacol Res. 2013;69:137–43.PubMedGoogle Scholar
  3. 3.
    Miller LS, Cho JS. Immunity against Staphylococcus aureus cutaneous infections. Nat Rev Immunol. 2011;11:505–18.PubMedGoogle Scholar
  4. 4.
    Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol. 2010;11:373–84.PubMedGoogle Scholar
  5. 5.
    Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637–50.PubMedGoogle Scholar
  6. 6.
    Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–95.PubMedGoogle Scholar
  7. 7.
    Tomasinsig L, Zanetti M. The cathelicidins—structure, function and evolution. Curr Protein Pept Sci. 2005;6:23–34.PubMedGoogle Scholar
  8. 8.
    Yount NY, Yeaman MR. Multidimensional signatures in antimicrobial peptides. Proc Natl Acad Sci USA. 2004;101:7363–8.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Peschel A, Sahl HG. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol. 2006;4:529–36.PubMedGoogle Scholar
  10. 10.
    Zanetti M. The role of cathelicidins in the innate host defenses of mammals. Curr Issue Mol Biol. 2005;7:179–96.Google Scholar
  11. 11.
    Soehnlein O, Wantha S, Simsekyilmaz S, Doring Y, Megens RT, Mause SF, Drechsler M, Smeets R, Weinandy S, Schreiber F, Gries T, Jockenhoevel S, Moller M, Vijayan S, van Zandvoort MA, Agerberth B, Pham CT, Gallo RL, Hackeng TM, Liehn EA, Zernecke A, Klee D, Weber C. Neutrophil-derived cathelicidin protects from neointimal hyperplasia. Sci Transl Med. 2011;3:103ra98.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Chromek M, Slamova Z, Bergman P, Kovacs L, Podracka L, Ehren I, Hokfelt T, Gudmundsson GH, Gallo RL, Agerberth B, Brauner A. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med. 2006;12:636–41.PubMedGoogle Scholar
  13. 13.
    Rosenberger CM, Gallo RL, Finlay BB. Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc Natl Acad Sci USA. 2004;101:2422–7.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Gallo RL, Kim KJ, Bernfield M, Kozak CA, Zanetti M, Merluzzi L, Gennaro R. Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J Biol Chem. 1997;272:13088–93.PubMedGoogle Scholar
  15. 15.
    Horibe K, Nakamichi Y, Uehara S, Nakamura M, Koide M, Kobayashi Y, Takahashi N, Udagawa N. Roles of cathelicidin-related antimicrobial peptide in murine osteoclastogenesis. Immunology. 2013;140:344–51.PubMedGoogle Scholar
  16. 16.
    Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005;3:238–50.PubMedGoogle Scholar
  17. 17.
    De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med. 2000;192:1069–74.Google Scholar
  18. 18.
    Kurosaka K, Chen Q, Yarovinsky F, Oppenheim JJ, Yang D. Mouse cathelin-related antimicrobial peptide chemoattracts leukocytes using formyl peptide receptor-like 1/mouse formyl peptide receptor-like 2 as the receptor and acts as an immune adjuvant. J Immunol. 2005;174:6257–65.PubMedGoogle Scholar
  19. 19.
    Koczulla R, von Degenfeld G, Kupatt C, Krotz F, Zahler S, Gloe T, Issbrucker K, Unterberger P, Zaiou M, Lebherz C, Karl A, Raake P, Pfosser A, Boekstegers P, Welsch U, Hiemstra PS, Vogelmeier C, Gallo RL, Clauss M, Bals R. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest. 2003;111:1665–72.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Coffelt SB, Tomchuck SL, Zwezdaryk KJ, Danka ES, Scandurro AB. Leucine leucine-37 uses formyl peptide receptor-like 1 to activate signal transduction pathways, stimulate oncogenic gene expression, and enhance the invasiveness of ovarian cancer cells. Mol Cancer Res. 2009;7:907–15.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Murakami M, Ohtake T, Dorschner RA, Gallo RL. Cathelicidin antimicrobial peptides are expressed in salivary glands and saliva. J Dent Res. 2002;81:845–50.PubMedGoogle Scholar
  22. 22.
    Puklo M, Guentsch A, Hiemstra PS, Eick S, Potempa J. Analysis of neutrophil-derived antimicrobial peptides in gingival crevicular fluid suggests importance of cathelicidin LL-37 in the innate immune response against periodontogenic bacteria. Oral Microbiol Immunol. 2008;23:328–35.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Nizet V, Gallo RL. Cathelicidins and innate defense against invasive bacterial infection. Scand J Infect Dis. 2003;35:670–6.PubMedGoogle Scholar
  24. 24.
    Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature. 2001;414:454–7.PubMedGoogle Scholar
  25. 25.
    Kovach MA, Ballinger MN, Newstead MW, Zeng X, Bhan U, Yu FS, Moore BB, Gallo RL, Standiford TJ. Cathelicidin-related antimicrobial peptide is required for effective lung mucosal immunity in gram-negative bacterial pneumonia. J Immunol. 2012;189:304–11.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Yamasaki KDNA, Bardan A, Murakami M, Ohtake T, Coda A, Dorschner RA, Bonnart C, Descargues P, Hovnanian A, Morhenn VB, Gallo RL. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med. 2007;13:975–80.PubMedGoogle Scholar
  27. 27.
    Gallo RL, Hooper LV. Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol. 2012;12:503–16.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Hancock RE, Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 2000;8:402–10.PubMedGoogle Scholar
  29. 29.
    Rosenfeld Y, Papo N, Shai Y. Endotoxin (lipopolysaccharide) neutralization by innate immunity host-defense peptides. Peptide properties and plausible modes of action. J Biol Chem. 2006;281:1636–43.PubMedGoogle Scholar
  30. 30.
    Mookherjee N, Brown KL, Bowdish DM, Doria S, Falsafi R, Hokamp K, Roche FM, Mu R, Doho GH, Pistolic J, Powers JP, Bryan J, Brinkman FS, Hancock RE. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol. 2006;176:2455–64.PubMedGoogle Scholar
  31. 31.
    Kandler K, Shaykhiev R, Kleemann P, Klescz F, Lohoff M, Vogelmeier C, Bals R. The anti-microbial peptide LL-37 inhibits the activation of dendritic cells by TLR ligands. Int Immunol. 2006;18:1729–36.PubMedGoogle Scholar
  32. 32.
    Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun. 2008;76:4176–82.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Tomasinsig L, Pizzirani C, Skerlavaj B, Pellegatti P, Gulinelli S, Tossi A, Di Virgilio F, Zanetti M. The human cathelicidin LL-37 modulates the activities of the P2X7 receptor in a structure-dependent manner. J Biol Chem. 2008;283:30471–81.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Subramanian HGK, Guo Q, Price R, Ali H. Mas-related gene X2 (MrgX2) is a novel G protein-coupled receptor for the antimicrobial peptide LL-37 in human mast cells: resistance to receptor phosphorylation, desensitization, and internalization. J Biol Chem. 2011;286:44739–49.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Seil M, Kabre E, Nagant C, Vandenbranden M, Fontanils U, Marino A, Pochet S, Dehaye JP. Regulation by CRAMP of the responses of murine peritoneal macrophages to extracellular ATP. Biochim Biophys Acta. 2010;1798:569–78.PubMedGoogle Scholar
  36. 36.
    North RA. Molecular physiology of P2X receptors. Physiol Rev. 2002;82:1013–67.PubMedGoogle Scholar
  37. 37.
    Surprenant A, Rassendren F, Kawashima E, North RA, Buell G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science. 1996;272:735–8.PubMedGoogle Scholar
  38. 38.
    Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G. Tissue distribution of the P2X7 receptor. Neuropharmacology. 1997;36:1277–83.PubMedGoogle Scholar
  39. 39.
    Sorge RE, Trang T, Dorfman R, Smith SB, Beggs S, Ritchie J, Austin JS, Zaykin DV, Vander Meulen H, Costigan M, Herbert TA, Yarkoni-Abitbul M, Tichauer D, Livneh J, Gershon E, Zheng M, Tan K, John SL, Slade GD, Jordan J, Woolf CJ, Peltz G, Maixner W, Diatchenko L, Seltzer Z, Salter MW, Mogil JS. Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity. Nat Med. 2012;18:595–9.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Elssner A, Duncan M, Gavrilin M, Wewers MD. A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1 beta processing and release. J Immunol. 2004;172:4987–94.PubMedGoogle Scholar
  41. 41.
    Kahlenberg JM, Carmona-Rivera C, Smith CK, Kaplan MJ. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol. 2013;190:1217–26.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G. K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 2013;38:1142–53.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Lande RGJ, Facchinetti V, Chatterjee B, Wang YH, Homey B, Cao W, Wang YH, Su B, Nestle FO, Zal T, Mellman I, Schröder JM, Liu YJ, Gilliet M. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449:564–9.PubMedGoogle Scholar
  44. 44.
    Lande RGD, Facchinetti V, Frasca L, Conrad C, Gregorio J, Meller S, Chamilos G, Sebasigari R, Riccieri V, Bassett R, Amuro H, Fukuhara S, Ito T, Liu YJ, Gilliet M. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med. 2011;3:73ra19.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Nagaoka I, Hirota S, Niyonsaba F, Hirata M, Adachi Y, Tamura H, Heumann D. Cathelicidin family of antibacterial peptides CAP18 and CAP11 inhibit the expression of TNF-alpha by blocking the binding of LPS to CD14(+) cells. J Immunol. 2001;167:3329–38.PubMedGoogle Scholar
  46. 46.
    Ciornei CD, Egesten A, Bodelsson M. Effects of human cathelicidin antimicrobial peptide LL-37 on lipopolysaccharide-induced nitric oxide release from rat aorta in vitro. Acta Anaesthesiol Scand. 2003;47:213–20.PubMedGoogle Scholar
  47. 47.
    Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DY. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347:1151–60.PubMedGoogle Scholar
  48. 48.
    de Jongh GJ, Zeeuwen PL, Kucharekova M, Pfundt R, van der Valk PG, Blokx W, Dogan A, Hiemstra PS, van de Kerkhof PC, Schalkwijk J. High expression levels of keratinocyte antimicrobial proteins in psoriasis compared with atopic dermatitis. J Invest Dermatol. 2005;125:1163–73.PubMedGoogle Scholar
  49. 49.
    Hata TR, Kotol P, Boguniewicz M, Taylor P, Paik A, Jackson M, Nguyen M, Kabigting F, Miller J, Gerber M, Zaccaro D, Armstrong B, Dorschner R, Leung DY, Gallo RL. History of eczema herpeticum is associated with the inability to induce human beta-defensin (HBD)-2, HBD-3 and cathelicidin in the skin of patients with atopic dermatitis. Br J Dermatol. 2010;163:659–61.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, Darst MA, Gao B, Boguniewicz M, Travers JB, Leung DY. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol. 2003;171:3262–9.PubMedGoogle Scholar
  51. 51.
    Howell MD, Gallo RL, Boguniewicz M, Jones JF, Wong C, Streib JE, Leung DY. Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. Immunity. 2006;24:341–8.PubMedGoogle Scholar
  52. 52.
    Carlsson G, Wahlin YB, Johansson A, Olsson A, Eriksson T, Claesson R, Hanstrom L, Henter JI. Periodontal disease in patients from the original Kostmann family with severe congenital neutropenia. J Periodontol. 2006;77:744–51.PubMedGoogle Scholar
  53. 53.
    Putsep K, Carlsson G, Boman HG, Andersson M. Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet. 2002;360:1144–9.PubMedGoogle Scholar
  54. 54.
    Hosokawa I, Hosokawa Y, Komatsuzawa H, Goncalves RB, Karimbux N, Napimoga MH, Seki M, Ouhara K, Sugai M, Taubman MA, Kawai T. Innate immune peptide LL-37 displays distinct expression pattern from beta-defensins in inflamed gingival tissue. Clin Exp Immunol. 2006;146:218–25.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Turkoglu O, Emingil G, Kutukculer N, Atilla G. Gingival crevicular fluid levels of cathelicidin LL-37 and interleukin-18 in patients with chronic periodontitis. J Periodontol. 2009;80:969–76.PubMedGoogle Scholar
  56. 56.
    Rosen G, Sela MN, Bachrach G. The antibacterial activity of LL-37 against Treponema denticola is dentilisin protease independent and facilitated by the major outer sheath protein virulence factor. Infect Immun. 2012;80:1107–14.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Dale BA, Fredericks LP. Antimicrobial peptides in the oral environment: expression and function in health and disease. Curr Issue Mol Biol. 2005;7:119–33.Google Scholar
  58. 58.
    Graves DT, Oates T, Garlet GP. Review of osteoimmunology and the host response in endodontic and periodontal lesions. J Oral Microbiol. 2011;3:5304.Google Scholar
  59. 59.
    Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T, Koga T, Martin TJ, Suda T. Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci USA. 1990;87:7260–4.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Takahashi N, Akatsu T, Udagawa N, Sasaki T, Yamaguchi A, Moseley JM, Martin TJ, Suda T. Osteoblastic cells are involved in osteoclast formation. Endocrinology. 1988;123:2600–2.PubMedGoogle Scholar
  61. 61.
    Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev. 1999;20:345–57.PubMedGoogle Scholar
  62. 62.
    Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337–42.PubMedGoogle Scholar
  63. 63.
    Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, Morony S, Capparelli C, Van G, Kaufman S, van der Heiden A, Itie A, Wakeham A, Khoo W, Sasaki T, Cao Z, Penninger JM, Paige CJ, Lacey DL, Dunstan CR, Boyle WJ, Goeddel DV, Mak TW. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 1999;13:1015–24.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Sato N, Takahashi N, Suda K, Nakamura M, Yamaki M, Ninomiya T, Kobayashi Y, Takada H, Shibata K, Yamamoto M, Takeda K, Akira S, Noguchi T, Udagawa N. MyD88 but not TRIF is essential for osteoclastogenesis induced by lipopolysaccharide, diacyl lipopeptide, and IL-1alpha. J Exp Med. 2004;200:601–11.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Uchiyama M, Nakamichi Y, Nakamura M, Kinugawa S, Yamada H, Udagawa N, Miyazawa H. Dental pulp and periodontal ligament cells support osteoclastic differentiation. J Dent Res. 2009;88:609–14.PubMedGoogle Scholar
  66. 66.
    Supanchart C, Thawanaphong S, Makeudom A, Bolscher JG, Nazmi K, Kornak U, Krisanaprakornkit S. The antimicrobial peptide, LL-37, inhibits in vitro osteoclastogenesis. J Dent Res. 2012;91:1071–7.PubMedGoogle Scholar
  67. 67.
    McCrudden MT, Orr DF, Yu Y, Coulter WA, Manning G, Irwin CR, Lundy FT. LL-37 in periodontal health and disease and its susceptibility to degradation by proteinases present in gingival crevicular fluid. J Clin Periodontol. 2013;40:933–41.PubMedGoogle Scholar

Copyright information

© The Society of The Nippon Dental University 2014

Authors and Affiliations

  • Yuko Nakamichi
    • 1
    Email author
  • Kanji Horibe
    • 2
  • Naoyuki Takahashi
    • 1
  • Nobuyuki Udagawa
    • 3
  1. 1.Institute for Oral ScienceMatsumoto Dental UniversityNaganoJapan
  2. 2.Department of Oral HistologyMatsumoto Dental UniversityNaganoJapan
  3. 3.Department of BiochemistryMatsumoto Dental UniversityNaganoJapan

Personalised recommendations