, Volume 102, Issue 1, pp 36–41 | Cite as

The effect of temperature and contact time of sodium hypochlorite on human roots infected with Enterococcus faecalis and Candida albicans

  • Kamran Gulsahi
  • R. Ebru Tirali
  • S. Burcak Cehreli
  • Zeynep Ceren Karahan
  • Emel Uzunoglu
  • Bizden Sabuncuoglu
Original Article


The aim of this study was to evaluate the effectiveness of 2.5 % NaOCl at different temperature and time intervals on Enterococcus faecalis and Candida albicans-infected human roots. A total of 112 root cylinders prepared from extracted single-rooted humans were infected by E. faecalis (Group A, n = 56) or C. albicans (Group B, n = 56); 3 root cylinders served as negative controls. Both groups were further divided into 6 subgroups according to three contact times (30 s, 1 min, 5 min) with NaOCl at two different temperatures (25 or 37 °C). Microorganism growth was controlled at the 24th and 48th hours. Statistical analysis was performed using the Chi-square test. While NaOCl at 25 °C for 5 min was the most effective irrigation regimen to eliminate E. faecalis (p < 0.001), NaOCl at 37 °C for 5 min exhibited significantly superior antifungal properties (p < 0.05). At the same contact times, difference in the temperature of NaOCl did not affect the growth of either E. faecalis or C. albicans. As a result, the irrigation time of NaOCl was more effective than the temperature to eliminate E. faecalis, while pre-heating of NaOCl to 37 °C increased its effectiveness on C. albicans at 5 min contact time.


Sodium hypochlorite Preheating C. albicans E. faecalis 



The authors are grateful to Prof. Dr. Atilla H. ELHAN for analyzing the data.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Siqueira JF Jr, Roças IN. Polymerase chain reaction-based analysis of microorganisms associated with failed endodontic treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97:85–94.PubMedCrossRefGoogle Scholar
  2. 2.
    Sedgley C, Lennan S, Applebe O. Survival of Enterococcus faecalis in root canals. Int Endod J. 2005;38:735–42.PubMedCrossRefGoogle Scholar
  3. 3.
    Haapasalo M, Orstavik D. In vitro infection and disinfection of dentinal tubules. J Dent Res. 1987;66:1375–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Nair PNR, Sjögren U, Figdor D, Sundqvist G. Persistent periapical radiolucencies of root-filled human teeth, failed endodontic treatments, and periapical scars. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;87:617–27.PubMedCrossRefGoogle Scholar
  5. 5.
    Tirali RE, Bodur H, Ece G. In vitro antimicrobial activity of sodium hypochlorite, chlorhexidine gluconate and octenidine dihydrochloride in elimination of microorganisms within dentinal tubules of primary and permanent teeth. Med Oral Patol Oral Cir Bucal. 2012;17:e517–22.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Smith JJ, Wayman BE. An evaluation of the antimicrobial effectiveness of citric acid as root canal irrigant. J Endod. 1986;12:54–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Waltimo TM, Orstavik D, Sirén EK, Haapasalo MPP. In vitro susceptibility of Candida albicans to four disinfectants and their combinations. Int Endod J. 1999;32:421–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Gomes BP, Lilley JD, Drucker DB. Association of endodontic symptoms and signs with particular combinations of specific bacteria. Int Endod J. 1996;29:69–75.PubMedCrossRefGoogle Scholar
  9. 9.
    Oliver JD. The viable but nonculturable state in bacteria. J Microbiol. 2005;43:93–100.PubMedGoogle Scholar
  10. 10.
    Signoretto C, Lleó MM, Tafi MC, Canepari PL. Cell wall chemical composition of Enterococcus faecalis in the viable but nonculturable state. Appl Environ Microbiol. 2000;66:1953–9.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Basrani BR, Manek S, Fillery E. Using diazotization to characterize the effect of heat or sodium hypochlorite on 2.0 % chlorhexidine. J Endod. 2009;35:1296–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Sirtes G, Waltimo T, Schaetzle M, Zehnder M. The effects of temperature on sodium hypochlorite short-term stability, pulp dissolution capacity, and antimicrobial efficacy. J Endod. 2005;31:669–71.PubMedCrossRefGoogle Scholar
  13. 13.
    Gomes B, Ferraz C, Vianna M, Berber V, Teixeira F, Souza-Filho F. In vitro antimicrobial activity of several concentrations of sodiom hypochlorite and chlorhexidine gluconate in the elimination of Enterococcos faecalis. Int Endod J. 2001;34:424–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Siqueira J, Rocas I, Favieri A, Lima K. Chemomechanical reduction of the bacterial population in the root canal alter instrumentation and irrigation with 1 %, 2.5 %, and 5.25 % sodium hypochlorite. J Endod. 2000;26:331–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Retamozo B, Shabahang S, Johnson N, Aprecio RM, Torabinejad M. Minimum contact time and concentration of sodium hypochlorite required to eliminate Enterococcus faecalis. J Endod. 2010;36:520–3.PubMedCrossRefGoogle Scholar
  16. 16.
    Spencer HR, Ike V, Brennan PA. Review: the use of sodium hypochlorite in endodontics—potential complications and their management. Br Dent J. 2007;202:555–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Rossi-Fedele G, De Figueiredo AP. Use of a bottle warmer to increase 4 % sodium hypochlorite tissue dissolution ability on bovine pulp. Aust Endod J. 2008;34:39–42.PubMedCrossRefGoogle Scholar
  18. 18.
    Shen Y, Stojicic S, Qian W, Olsen I, Haapasalo M. The synergistic antimicrobial effect by mechanical agitation and two chlorhexidine preparations on biofilm bacteria. J Endod. 2010;36:100–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Ballal NV, Kundabala M, Bhat KS, Acharya S, Ballal M, Kumar R, Prakash PY. Susceptibility of Candida albicans and Enterococcus faecalis to chitosan, chlorhexidine gluconate and their combination in vitro. Aust Endod J. 2009;35(1):29–33.PubMedCrossRefGoogle Scholar
  20. 20.
    Berber VB, Gomes BPFA, Sena NT, Vianna ME, Ferraz CCR, Zaia AA, Souza-Filho FJ. Efficacy of various concentrations of NaOCl and instrumentation techniques in reducing Enterococcus faecalis within root canals and dentinal tubules. Int Endod J. 2006;39:10–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Clegg MS, Vertucci FJ, Walker C, Belanger M, Britto LR. The effect of exposure to irrigant solutions on apical dentin biofilms in vitro. J Endod. 2006;32:434–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Vianna ME, Gomes BP. Efficacy of sodium hypochlorite combined with chlorhexidine against Enterococcus faecalis in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:585–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Abou-Rass M, Oglesby SW. The effects of temperature, concentration, and tissue type on the solvent ability of sodium hypochlorite. J Endod. 1981;7:376–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Kamburis JJ, Barker TH, Barfield RD, Eleazer PD. Removal of organic debris from bovine dentin shavings. J Endod. 2003;29:559–61.PubMedCrossRefGoogle Scholar
  25. 25.
    Stojicic S, Zivkovic S, Qian W, Zhang H, Haapasalo M. Tissue dissolution by sodium hypochlorite: effect of concentration, agitation and surfactant. J Endod. 2010;36:1558–62.PubMedCrossRefGoogle Scholar
  26. 26.
    Haapasalo H, Siren E, Waltimo T, Orstavik D, Haapasalo M. Inactivation of local root canal medicaments by dentine: an in vitro study. Int Endod J. 2000;33:126–31.PubMedCrossRefGoogle Scholar
  27. 27.
    Fidalgo TK, Barcelos R, Portela MB, Soares RM, Gleiser R, Silva-Filho FC. Inhibitory activity of root canal irrigants against Candida albicans, Enterococcus faecalis and Staphylococcus aureus. Braz Oral Res. 2010;24:406–12.PubMedCrossRefGoogle Scholar
  28. 28.
    Chandra SS, Miglani R, Srinivasan MR, Indira R. Antifungal efficacy of 5.25 % sodium hypochlorite, 2 % chlorhexidine gluconate, and 17 % EDTA with and without an antifungal agent. J Endod. 2010;26:675–8.CrossRefGoogle Scholar
  29. 29.
    Ruff ML, McClanahan SB, Babel BS. In vitro antifungal efficacy of four irrigants as a final rinse. J Endod. 2006;32:331–3.PubMedCrossRefGoogle Scholar
  30. 30.
    Radcliffe CE, Potouridou L, Qureshi R, et al. Antimicrobial activity of varying concentrations of sodium hypochlorite on the endodontic microorganisms Actinomyces israelii, A. naeslundii, Candida albicans and Enterococcus faecalis. Int Endod J. 2004;37:438–46.PubMedCrossRefGoogle Scholar
  31. 31.
    Dychdala GR. Chlorine and chlorine compounds. In: Block SS, editor. Disinfection, sterilization and preservation. Philadelphia: Lea & Febiger; 1991. p. 131–51.Google Scholar
  32. 32.
    Law A, Messer H. An evidence-based analysis of the antibacterial effectiveness of intracanal medicaments. J Endod. 2004;30:689–94.PubMedCrossRefGoogle Scholar

Copyright information

© The Society of The Nippon Dental University 2012

Authors and Affiliations

  • Kamran Gulsahi
    • 1
  • R. Ebru Tirali
    • 2
  • S. Burcak Cehreli
    • 2
  • Zeynep Ceren Karahan
    • 3
  • Emel Uzunoglu
    • 3
  • Bizden Sabuncuoglu
    • 4
  1. 1.Department of Endodontics, Faculty of DentistryBaskent UniversityAnkaraTurkey
  2. 2.Department of Pediatric Dentistry, Faculty of DentistryBaskent UniversityAnkaraTurkey
  3. 3.Department of Medical Microbiology, Faculty of MedicineAnkara UniversityAnkaraTurkey
  4. 4.Department of Histology and Embryology, Faculty of MedicineAnkara UniversityAnkaraTurkey

Personalised recommendations