, Volume 102, Issue 1, pp 22–30 | Cite as

Effects of fluoride in bone repair: an evaluation of RANKL, OPG and TRAP expression

  • Mileni da Silva Fernandes
  • Marcela Mitsuko Yanai
  • Gisele Miyamura Martins
  • Flávia Godoy Iano
  • Aline Lima Leite
  • Tânia Mary Cestari
  • Rumio Taga
  • Marília Afonso Rabelo Buzalaf
  • Rodrigo Cardoso de OliveiraEmail author
Original Article


The objective of this study was to evaluate comparatively the effect of fluoride in the expression of the receptor activator of nuclear factor kappa B ligand (RANKL), osteoprotegerin (OPG) and tartrate-resistant acid phosphatase (TRAP) in alveolar bone repair in rats. We used 3 groups of male Wistar rats (n = 5/group), which received drinking water containing different doses of F (NaF): 0, 5 and 50 ppm, for 60 days before the incisors extraction. The upper incisors were extracted and the animals were killed 7, 14, 21 and 30 days after extraction. The hemi-maxillae were collected for microscopic examination (histomorphometric and immunostaining for RANKL, OPG and TRAP). Histomorphometric analysis confirmed an increase in the volume density of neoformed bone between 7 and 30 days for groups control, 5 and 50 ppm of F, with a concomitant decrease in the volume density of connective tissue and blood clot. Higher blood clot for groups 5 and 50 ppm of F at 30 days was observed. The RANKL and OPG expressions were not changed by chronic exposure to fluoride in the drinking water during the studied periods; on the other hand, TRAP expression was changed (at 7 days) by chronic exposure to fluoride (p < 0.05). It was concluded that F in high concentrations can slow the blood clot remission and bone repair, and alter the TRAP expression in the beginning of the bone tissue repair. However, a better understanding about this blood clot remission phenomenon is required.


Bone repair Fluoride RANKL Osteoprotegerin Acid phosphatase 



We appreciate the technical collaboration of Danielle Santi Ceolin laboratory (Laboratory of Histology), and student Jaqueline Caetano Faria. Fundação de Amparo a Pesquisa do Estado de São Paulo (Process: 2006/06430-3, 2007/00494-2 and 2008/09926-5) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (Process: 472798/2008-1).


  1. 1.
    Lau KH, Baylink DJ. Phosphotyrosyl protein phosphatases: potential regulators of cell proliferation and differentiation. Crit Rev Oncog. 1993;4:451–71.PubMedGoogle Scholar
  2. 2.
    Ohmi K, Nakagaki H, Tsuboi S, Okumura A, Sugiyama T, Thuy TT, Robinson C. The effect of fluoridation and its discontinuation on fluoride profiles in the alveolar bone of rat. Calcif Tissue Int. 2005;77:226–32.PubMedCrossRefGoogle Scholar
  3. 3.
    Cadir B, Kürkcü M, Öz IA, Benliday ME. Effects of vitamin K1 on fluoride-induced bone changes in growing rats: a histomorphometric and radiodensitometric study. Arch Oral Biol. 2009;54:512–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Qu WJ, Zhong DB, Wu PF, Wang JF, Han B. Sodium fluoride modulates caprine osteoblast proliferation and differentiation. J Bone Miner Metab. 2008;26:328–34.PubMedCrossRefGoogle Scholar
  5. 5.
    Qu H, Wei M. The effect of fluoride contents in fluoridated hydroxyapatite on osteoblast behavior. Acta Biomater. 2006;2:113–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Cooper LF, Zhou Y, Takebe J, Guo J, Abron A, Holmén A, Ellingsen JE. Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants. Biomaterials. 2006;27:926–36.PubMedCrossRefGoogle Scholar
  7. 7.
    Kürkcü M, Benlidayi ME, Ozsoy S, Ozyeğin LS, Oktar FN, Kurtoğlu C. Histomorphometric evaluation of implants coated with enamel or dentine derived fluoride-substituted apatite. J Mater Sci Mater Med. 2007;9:59–65.Google Scholar
  8. 8.
    Collaert B, Wijnen L, De Bruyn H. A 2-year prospective study on immediate loading with fluoride-modified implants in the edentulous mandible. Clin Oral Implants Res. 2011;18:1–6.Google Scholar
  9. 9.
    Haguenauer D, Welch V, Shea B, Tugwell P, Adachi JD, Wells G. Fluoride for the treatment of postmenopausal osteoporotic fractures: a meta-analysis. Osteoporos Int. 2000;11:727–38.PubMedCrossRefGoogle Scholar
  10. 10.
    Shashi A, Kumar M, Bhardwaj M. Incidence of skeletal deformities in endemic fluorosis. Trop Doct. 2008;38:231–3.CrossRefGoogle Scholar
  11. 11.
    Tamer MN, Kale Koroglu B, Arslan C, Akdogan M, Koroglu M, Cam H, Yildiz M. Osteosclerosis due to endemic fluorosis. Sci Total Environ. 2007;373:43–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Oruc N. Occurrence and problems of high fluoride waters in Turkey: an overview. Environ Geochem Health. 2008;30:315–23.PubMedCrossRefGoogle Scholar
  13. 13.
    Von Tirpitz C, Klaus J, Steinkamp M, Hofbauer LC, Kratzer W, Mason R, Boehm BO, Adler G, Reinshagen M. Therapy of osteoporosis in patients with Crohn’s disease: a randomized study comparing sodium fluoride and ibandronate. Aliment Pharmacol Ther. 2003;17:807–16.CrossRefGoogle Scholar
  14. 14.
    Yan D, Gurumurthy A, Wright M, Pfeiler TW, Loboa EG, Everett ET. Genetic background influences fluoride’s effects on osteoclastogenesis. Bone. 2007;41:1036–44.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Reeves PG, Nielsen FH, Fahey GC. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993;123:1939–51.PubMedGoogle Scholar
  16. 16.
    Oliveira RC, Oliveira FH, Cestari TM, Taga R, Granjeiro JM. Morphometric evaluation of the repair of critical-size defects using demineralized bovine bone and autogenous bone grafts in rat calvaria. Clin Oral Implants Res. 2008;19:749–54.PubMedCrossRefGoogle Scholar
  17. 17.
    Okamoto T, Russo MC. Wound healing following tooth extraction. Histochemical study in rats. Rev Fac Odontol Aracatuba. 1973;2:153–69.PubMedGoogle Scholar
  18. 18.
    Weibel ER. Stereological principles for morphometry in electron microscopic cytology. Int Rev Cytol. 1969;26:235–302.PubMedGoogle Scholar
  19. 19.
    Hallanger Johnson JE, Kearns AE, Doran PM, Khoo TK, Wermers RA. Fluoride-related bone disease associated with habitual tea consumption. Mayo Clin Proc. 2007;82:719–24.PubMedGoogle Scholar
  20. 20.
    Grobler SR, Louw AJ, Chikte UME, Rossouw RJ, Van TJ, Kotze W. The relationships between two different drinking water fluoride levels, dental fluorosis and bone mineral density of children. Open Dent J. 2009;3:48–54.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Raffi MB, Méndez MC, Riet-Correa F. Histomorphometric and histological evaluations of the bone lesions caused by fluoride in chickens (in Portuguese). Pesq Vet Bras. 1997;17:69–76.CrossRefGoogle Scholar
  22. 22.
    Kragstrup J, Richards A, Fejerskov O. Experimental osteo-fluorosis in the domestic pig: a histomorphometric study of vertebral trabecular bone. J Dent Res. 1984;63:885–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Carvalho JG, Cestari TM, Oliveira RC, Buzalaf MA. Fluoride effects on ectopic bone formation in young and old rats. Methods Find Exp Clin Pharmacol. 2008;30:287–94.PubMedCrossRefGoogle Scholar
  24. 24.
    Urist MR. Bone: formation by autoinduction. Science. 1965;150:893–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Librus H, Pietrokovski J, Ulmanski M, Gedalia I. The effect of fluoride on molar socket healing in the rat. Arch Oral Biol. 1973;18:1283–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Yan X, Feng C, Chen Q, Li W, Wang H, Lv L, Smith GW, Wang J. Effects of sodium fluoride treatment in vitro on cell proliferation, apoptosis and caspase-3 and caspase-9 mRNA expression by neonatal rat osteoblasts. Arch Toxicol. 2009;83:451–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Mousny M, Omelon S, Wise L, Everett ET, Dumitriu M, Holmyard DP, Banse X, Devogelaer JP, Grynpas MD. Fluoride effects on bone formation and mineralization are influenced by genetics. Bone. 2008;43:1067–74.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Muller P, Schmid K, Warnecke G, Setnikar I, Simon B. Sodium fluoride-induced gastric mucosal lesions: comparison with sodium monofluorophosphate. Z Gastroenterol. 1992;30:252–4.PubMedGoogle Scholar
  29. 29.
    Partanen S. Inhibition of human renal acid phosphatases by nephrotoxic micromolar concentrations of fluoride. Exp Toxicol Pathol. 2002;54:231–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Yan X, Yan X, Morrison A, Han T, Chen Q, Li J, Wang J. Fluoride induces apoptosis and alters collagen I expression in rat osteoblasts. Toxicol Lett. 2011;200:133–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Wang Z, Yang X, Yang S, Ren G, Ferreri M, Su Y, Chen L, Han B. Sodium fluoride suppress proliferation and induce apoptosis through decreased insulin-like growth factor-I expression and oxidative stress in primary cultured mouse osteoblasts. Arch Toxicol. 2011. doi: 10.1007/s00204-011-0697-y.Google Scholar
  32. 32.
    Willems HM, van den Heuvel EG, Castelein S, Buisman JK, Bronckers AL, Bakker AD, Klein-Nulend J. Fluoride inhibits the response of bone cells to mechanical loading. Odontology. 2011;99:112–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Hars E, Massler M. Effects of fluorides, cortico-steroids and tetracyclines on extraction wound healing in rats. Acta Odontol Scand. 1972;30:511–22.PubMedCrossRefGoogle Scholar
  34. 34.
    Chou M-Y, Yan D, Jafarov T, Everett ET. Modulation of murine bone marrow-derived CFU-F and CFU-OB by in vivo bisphosphonate and fluoride treatments. Orthod Craniofac Res. 2009;12:141–7.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© The Society of The Nippon Dental University 2012

Authors and Affiliations

  • Mileni da Silva Fernandes
    • 1
  • Marcela Mitsuko Yanai
    • 1
  • Gisele Miyamura Martins
    • 1
  • Flávia Godoy Iano
    • 1
  • Aline Lima Leite
    • 1
  • Tânia Mary Cestari
    • 1
  • Rumio Taga
    • 1
  • Marília Afonso Rabelo Buzalaf
    • 1
  • Rodrigo Cardoso de Oliveira
    • 1
    Email author
  1. 1.Department of Biological Sciences, Bauru Dental SchoolUniversity of São Paulo (USP)BauruBrazil

Personalised recommendations