Odontology

, Volume 94, Issue 1, pp 1–9 | Cite as

Biofilms, a new approach to the microbiology of dental plaque

REVIEW ARTICLE

Abstract

Dental plaque has the properties of a biofilm, similar to other biofilms found in the body and the environment. Modern molecular biological techniques have identified about 1000 different bacterial species in the dental biofilm, twice as many as can be cultured. Oral biofilms are very heterogeneous in structure. Dense mushroom-like structures originate from the enamel surface, interspersed with bacteria-free channels used as diffusion pathways. The channels are probably filled with an extracellular polysaccharide (EPS) matrix produced by the bacteria. Bacteria in biofilms communicate through signaling molecules, and use this “quorum-sensing” system to optimize their virulence factors and survival. Bacteria in a biofilm have a physiology different from that of planktonic cells. They generally live under nutrient limitation and often in a dormant state. Such “sleepy” bacteria respond differently to antibiotics and antimicrobials, because these agents were generally selected in experiments with metabolically active bacteria. This is one of the explanations as to why antibiotics and antimicrobials are not as successful in the clinic as could be expected from laboratory studies. In addition, it has been found that many therapeutic agents bind to the biofilm EPS matrix before they even reach the bacteria, and are thereby inactivated. Taken together, these fundings highlight why the study of bacteria in the oral cavity is now taken on by studying the biofilms rather than individual species.

Key words

Biofilm Structure Quorum-sensing Antimicrobials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ullsfoss, BN, Ogaard, B, Arends, J, Ruben, J, Rolla, G, Afseth, J 1994Effect of a combined chlorhexidine and NaF mouthrinse: an in vivo human caries model studyScand J Dent Res10210912PubMedGoogle Scholar
  2. 2.
    Caufield, PW, Griffen, AL 2000Dental caries. An infectious and transmissible diseasePediatr Clin North Am47100119PubMedCrossRefGoogle Scholar
  3. 3.
    Ochman, H, Davalos, LM 2006The nature and dynamics of bacterial genomesScience31117303PubMedCrossRefGoogle Scholar
  4. 4.
    Raskin, DM, Seshadri, R, Pukatzki, SU, Mekalanos, JJ 2006Bacterial genomics and pathogen evolutionCell12470314PubMedCrossRefGoogle Scholar
  5. 5.
    Downes, J, Sutcliffe, I, Tanner, AC, Wade, WG 2005Prevotella marshii sp. nov. and Prevotella baroniae sp. nov, isolated from the human oral cavityInt J Syst Evol Microbiol5515515PubMedCrossRefGoogle Scholar
  6. 6.
    Phillips, GJ 2001Green fluorescent protein – a bright idea for the study of bacterial protein localizationFEMS Microbiol Lett204918PubMedGoogle Scholar
  7. 7.
    Wilson, T, Hastings, JW 1998BioluminescenceAnnu Cell Rev Biol14197230CrossRefGoogle Scholar
  8. 8.
    Wilmes, P, Bond, PL 2006Metaproteomics: studying functional gene expression in microbial ecosystemsTrends Microbiol14927PubMedCrossRefGoogle Scholar
  9. 9.
    Call, DR 2005Challenges and opportunities for pathogen detection using DNA micro arraysCrit Rev Microbiol31919PubMedCrossRefGoogle Scholar
  10. 10.
    Kok, J, Buist, G, Zomer, AL, van Hijum, SA, Kuipers, OP 2005Comparative and functional genomics of lactococciFEMS Microbiol Rev2941133PubMedCrossRefGoogle Scholar
  11. 11.
    Wilson, M, Patel, H, Noar, JH 1998Effect of chlorhexidine on multi-species biofilmsCurr Microbiol36138PubMedCrossRefGoogle Scholar
  12. 12.
    McBain, AJ, Bartolo, RG, Catrenich, CE, Charbonneau, D, Ledder, RG, Rickard, AH, Symmons, SA, Gilbert, P 2003Microbial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosmsAppl Environ Microbiol6917785PubMedCrossRefGoogle Scholar
  13. 13.
    Guggenheim, B, Guggenheim, M, Gmur, R, Giertsen, E, Thurnheer, T 2004Application of the Zurich biofilm model to problems of cariologyCaries Res3821222PubMedCrossRefGoogle Scholar
  14. 14.
    Lynch, RJ, ten Cate, JM 2006Effect of calcium glycerophosphate on demineralization in an in vitro biofilm modelCaries Res401427PubMedCrossRefGoogle Scholar
  15. 15.
    Listgarten, MA 1976Structure of the microbial flora associated with periodontal health and disease in man. A light and electron microscopic studyJ Periodontol47118PubMedGoogle Scholar
  16. 16.
    Stoodley, P, Debeer, D, Lewandowski, Z 1994Liquid flow in biofilm systemsAppl Environ Microbiol6027116PubMedGoogle Scholar
  17. 17.
    Auschill, TM, Hellwig, E, Sculean, A, Hein, N, Arweiler, NB 2004Impact of the intraoral location on the rate of biofilm growthClin Oral Investig897101PubMedCrossRefGoogle Scholar
  18. 18.
    Arweiler, NB, Hellwig, E, Sculean, A, Hein, N, Auschill, TM 2004Individual vitality pattern of in situ dental biofilms at different locations in the oral cavityCaries Res384427PubMedCrossRefGoogle Scholar
  19. 19.
    Chesson, P 2000General theory of competitive coexistence in spatially-varying environmentsTheor Popul Biol5821137PubMedCrossRefGoogle Scholar
  20. 20.
    Nyvad, B, Kilian, M 1987Microbiology of the early colonization of human enamel and root surfaces in vivoScand J Dent Res9536980PubMedGoogle Scholar
  21. 21.
    Smith, GL, Socransky, SS, Sansone, C 1989“Reverse” DNA hybridization method for the rapid identification of subgingival microorganismsOral Microbiol Immunol41415PubMedGoogle Scholar
  22. 22.
    Li, J, Helmerhorst, EJ, Leone, CW, Troxler, RF, Yaskell, T, Haffajee, AD, Socransky, SS, Oppenheim, FG 2004Identification of early microbial colonizers in human dental biofilmJ Appl Microbiol9713118PubMedCrossRefGoogle Scholar
  23. 23.
    Filoche, SK, Anderson, SA, Sissons, CH 2004Biofilm growth of Lactobacillus species is promoted by Actinomyces species and Streptococcus mutansOral Microbiol Immunol193226PubMedCrossRefGoogle Scholar
  24. 24.
    Kolenbrander, PE, Andersen, RN, Blehert, DS, Egland, PG, Foster, JS, Palmer, RJ,Jr 2002Communication among oral bacteriaMicrobiol Mol Biol Rev66486505PubMedCrossRefGoogle Scholar
  25. 25.
    Socransky, SS, Haffajee, AD, Smith, C, Martin, L, Haffajee, JA, Uzel, NG, Goodson, JM 2004Use of checkerboard DNA-DNA hybridization to study complex microbial ecosystemsOral Microbiol Immunol1935262PubMedCrossRefGoogle Scholar
  26. 26.
    Field, JA, Stams, AJ, Kato, M, Schraa, G 1995Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortiaAntonie Van Leeuwenhoek674777PubMedCrossRefGoogle Scholar
  27. 27.
    Takenaka, S, Iwaku, M, Hoshino, E 2001Artificial Pseudomonas aeruginosa biofilms and confocal laser scanning microscopic analysisJ Infect Chemother78793PubMedCrossRefGoogle Scholar
  28. 28.
    Zaura-Arite, E, van Marle, J, ten Cate, JM 2001Conofocal microscopy study of undisturbed and chlorhexidine-treated dental biofilmJ Dent Res80143640PubMedGoogle Scholar
  29. 29.
    Palmer, RJ,Jr, Wu, R, Gordon, S, Bloomquist, CG, Liljemark, WF, Kilian, M, Kolenbrander, PE 2001Retrieval of biofilms from the oral cavityMethods Enzymol337393403PubMedCrossRefGoogle Scholar
  30. 30.
    Foster, JS, Palmer, RJ,Jr, Kolenbrander, PE 2003Human oral cavity as a model for the study of genome-genome interactionsBiol Bull2042004PubMedGoogle Scholar
  31. 31.
    Costerton, JW, Lewandowski, Z, Caldwell, DE, Korber, DR, Lappin-Scott, HM 1995Microbial biofilmsAnnu Rev Microbiol4971145PubMedCrossRefGoogle Scholar
  32. 32.
    Xavier J de, B, Picioreanu, C, van Loosdrecht, MC 2005A general description of detachment for multidimensional modelling of biofilmsBiotechnol Bioeng2065169CrossRefGoogle Scholar
  33. 33.
    Filoche, SK, Zhu, M, Wu, CD 2004In situ biofilm formation by multi-species oral bacteria under flowing and anaerobic conditionsJ Dent Res838026PubMedGoogle Scholar
  34. 34.
    Palmer, RJ,Jr, Gordon, SM, Cisar, JO, Kolenbrander, PE 2003Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaqueJ Bacteriol18534009PubMedCrossRefGoogle Scholar
  35. 35.
    Guggenheim, M, Shapiro, S, Gmur, R, Guggenheim, B 2001Spatial arrangements and associative behavior of species in an in vitro oral biofilm modelAppl Environ Microbiol67134350PubMedCrossRefGoogle Scholar
  36. 36.
    Thurnheer, T, van der Ploeg, JR, Giertsen, E, Guggenheim, B 2006Effects of Streptococcus mutans gtfC deficiency on mixed oral biofilms in vitroCaries Res4016371PubMedCrossRefGoogle Scholar
  37. 37.
    Thurnheer, T, Gmur, R, Shapiro, S, Guggenheim, B 2003Mass transport of macromolecules within an in vitro model of supragingival plaqueAppl Environ Microbiol6917029PubMedCrossRefGoogle Scholar
  38. 38.
    Allesen-Holm, M, Barken, KB, Yang, L, Klausen, M, Webb, JS, Kjelleberg, S, Molin, S, Givskov, M, Tolker-Nielsen, T 2006A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilmsMol Microbiol59111428PubMedCrossRefGoogle Scholar
  39. 39.
    Whitchurch, CB, Tolker-Nielsen, T, Ragas, PC, Mattick, JS 2002Extracellular DNA required for bacterial biofilm formationScience2951487PubMedCrossRefGoogle Scholar
  40. 40.
    Kreft, JU 2004Biofilms promote altruismMicrobiology150275160PubMedCrossRefGoogle Scholar
  41. 41.
    Van Loosdrecht, MC, Heijnen, JJ, Eberl, H, Kreft, J, Picioreanu, C 2002Mathematical modelling of biofilm structuresAntonie Van Leeuwenhoek8124556PubMedCrossRefGoogle Scholar
  42. 42.
    Sanders, WE, Sanders, CC 1984

    Modification of normal flora by antibiotics: effects on individuals and the environment

    Koot, RKSande, MA eds. New dimensions in antimicrobial chemotherapyChurchill LivingstoneNew York21741
    Google Scholar
  43. 43.
    Marsh, PD 1994Microbial ecology of dental plaque and its significance in health and diseaseAdv Dent Res826371PubMedGoogle Scholar
  44. 44.
    Loesche, WJ 1979Clinical and microbiological aspects of chemotherapeutic agents used according to the specific plaque hypothesisJ Dent Res58240412PubMedGoogle Scholar
  45. 45.
    Theilade, E 1986The non-specific theory in microbial etiology of inflammatory periodontal diseasesJ Clin Periodontol1390511PubMedCrossRefGoogle Scholar
  46. 46.
    Marsh, PD 2003Are dental diseases examples of ecological catastrophes?Microbiology14927994PubMedCrossRefGoogle Scholar
  47. 47.
    Beighton, D 2005The complex oral microflora of high-risk individuals and groups and its role in the caries processCommunity Dent Oral Epidemiol3324855PubMedCrossRefGoogle Scholar
  48. 48.
    Rudiger, SG, Carlen, A, Meurman, JH, Kari, K, Olsson, J 2002Dental biofilms at healthy and inflamed gingival marginsJ Clin Periodontol2952430PubMedCrossRefGoogle Scholar
  49. 49.
    Spoering, AL, Gilmore, MS 2006Quorum sensing and DNA release in bacterial biofilmsCurr Opin Microbiol91337PubMedCrossRefGoogle Scholar
  50. 50.
    Havarstein, LS, Gaustad, P, Nes, IF, Morrison, DA 1996Identification of the streptococcal competence-pheromone receptorMol Microbiol218639PubMedCrossRefGoogle Scholar
  51. 51.
    Cvitkovitch, DG 2001Genetic competence and transformation in oral streptococciCrit Rev Oral Biol Med1221743PubMedCrossRefGoogle Scholar
  52. 52.
    Petersen, FC, Tao, L, Scheie, AA 2005DNA binding-uptake system: a link between cell-to-cell communication and biofilm formationJ Bacteriol1874392400PubMedCrossRefGoogle Scholar
  53. 53.
    Thomas, CM, Nielsen, KM 2005Mechanisms of, and barriers to, horizontal gene transfer between bacteriaNat Rev Microbiol371121PubMedCrossRefGoogle Scholar
  54. 54.
    Li, YH, Tang, N, Aspiras, MB, Lau, PC, Lee, JH, Ellen, RP, Cvitkovitch, DG 2002A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formationJ Bacteriol1842699708PubMedCrossRefGoogle Scholar
  55. 55.
    Whiteley, M, Lee, KM, Greenberg, EP 1999Identification of genes controlled by quorum sensing in Pseudomonas aeruginosaProc Natl Acad Sci U S A96139049PubMedCrossRefGoogle Scholar
  56. 56.
    Sepandj, F, Ceri, H, Gibb, AP, Read, RR, Olson, M 2003Biofilm infections in peritoneal dialysis-related peritonitis: comparison of standard MIC and MBEC in evaluation of antibiotic sensitivity of coagulase-negative staphylococciPerit Dial Int23779PubMedGoogle Scholar
  57. 57.
    Chambless, JD, Hunt, SM, Stewart, PS 2006A three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antimicrobialsAppl Environ Microbiol72200513PubMedCrossRefGoogle Scholar
  58. 58.
    Stewart, PS, Costerton, JW 2001Antibiotic resistance of bacteria in biofilmsLancet3581358PubMedCrossRefGoogle Scholar
  59. 59.
    Szomolay, B, Klapper, I, Dockery, J, Stewart, PS 2005Adaptive responses to antimicrobial agents in biofilmsEnviron Microbiol7118691PubMedCrossRefGoogle Scholar
  60. 60.
    Ten Cate, JM, Marsh, PD 1994Procedures for establishing efficacy of antimicrobial agents for chemotherapeutic caries preventionJ Dent Res73695703PubMedGoogle Scholar
  61. 61.
    Beaudouin, E, Kanny, G, Morisset, M, Renaudin, JM, Mertes, M, Laxenaire, MC, Mouton, C, Jacson, F, Moneret-Vautrin, DA 2004Immediate hypersensitivity to chlorhexidine: literature reviewAllerg Immunol (Paris)361236CrossRefGoogle Scholar
  62. 62.
    Twetman, S 2004Antimicrobials in future caries control? A review with special reference to chlorhexidine treatmentCaries Res382239PubMedCrossRefGoogle Scholar
  63. 63.
    Kara, D, Luppens, SB, Cate, JM 2006Differences between single- and dual-species biofilms of Streptococcus mutans and Veillonella parvula in growth, acidogenicity and susceptibility to chlorhexidineEur J Oral Sci1145863PubMedCrossRefGoogle Scholar
  64. 64.
    Weisburger, JH 1999Tea and health: the underlying mechanismsProc Soc Exp Biol Med2202715PubMedCrossRefGoogle Scholar
  65. 65.
    Gupta, S, Saha, B, Giri, AK 2002Comparative antimutagenic and anticlastogenic effects of green tea and black tea: a reviewMutat Res5123765PubMedCrossRefGoogle Scholar
  66. 66.
    Castaldo, S, Capasso, F 2002Propolis, an old remedy used in modern medicineFitoterapia73S16PubMedCrossRefGoogle Scholar
  67. 67.
    Koo, H, Pearson, SK, Scott-Anne, K, Abranches, J, Cury, JA, Rosalen, PL, Park, YK, Marquis, RE, Bowen, WH 2002Effects of apigenin and tt-farnesol on glucosyltransferase activity, biofilm viability and caries development in ratsOral Microbiol Immunol1733743PubMedCrossRefGoogle Scholar
  68. 68.
    Wood, S, Metcalf, D, Devine, D, Robinson, C 2006Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilmsJ Antimicrob Chemother576804PubMedCrossRefGoogle Scholar
  69. 69.
    Kreth, J, Merritt, J, Shi, W, Qi, F 2005Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilmJ Bacteriol1877193203PubMedCrossRefGoogle Scholar
  70. 70.
    Hillman, JD, Chen, A, Duncan, M, Lee, SW 1994Evidence that L-(+)-lactate dehydrogenase deficiency is lethal in Streptococcus mutansInfect Immun62604PubMedGoogle Scholar
  71. 71.
    Tagg, JR, Dierksen, KP 2003Bacterial replacement therapy: adapting “germ warfare” to infection preventionTrends Biotechnol2121723PubMedCrossRefGoogle Scholar

Copyright information

© The Society of The Nippon Dental University 2006

Authors and Affiliations

  1. 1.Department of Cariology Endodontolgy PedodontologyAcademic Centre for Dentistry (ACTA)AmsterdamThe Netherlands

Personalised recommendations