, Volume 93, Issue 1, pp 16–23 | Cite as

The response to sex steroid hormones and vitamin D of cultured osteoblasts derived from ovariectomized mice with and without 17β-estradiol pretreatment

  • Natan Patlas
  • Yehuda Zadik
  • Pirhya Yaffe
  • Michael Patlas
  • Zvi Schwartz
  • Asher OrnoyEmail author


This study investigated whether 17β-estradiol (E2) may have different effects on osteoblasts derived from estrogen-deficient ovariectomized (OVX) mice compared to sham-operated normal animals. We studied the specific effects of 17β-estradiol on the differentiation and function of cultured osteoblasts derived from these groups of animals, with or without estrogen replacement treatment. One-month-old mice were ovariectomized or sham-operated, and treated (every second day) for 4 weeks with 0.5 mg/kg 17β-estradiol or with vehicle alone. At the end of the experiment, bones were removed for primary osteoblast cultures or for morphological and chemical evaluation. In cells from untreated OVX animals, alkaline phosphatase (ALP) specific activity was reduced, while collagen production and mineralization were unchanged when compared to cells from controls. In vivo estrogen pretreatment of the OVX mice elevated ALP activity and mineralization of the cells, while collagen production was reduced. The addition of 17β-estradiol to the culture medium increased ALP activity, collagen production, and mineralization by all cultured osteoblasts, except in those derived from sham-operated, estrogen-pretreated mice, where these features remained unchanged. Osteocalcin production was unchanged. Addition of testosterone or 1,25(OH)2D3 to the culture medium induced changes that differed among the groups depending on the source of the cultured cells. It seems that ovariectomy in mice prior to culture affected the phenotype of the cultured osteoblasts and their response to estradiol, testosterone, and 1,25(OH)2D3, depending on whether animals were pretreated with estradiol or not. These results imply that the animal’s estrogen status prior to culture can influence the response to estrogens; this finding may have important implications for hormone replacement therapy (HRT) in postmenopausal women.

Key words

Estrogen Ovariectomy Osteoblast culture Alkaline phosphatase Collagen Mineralization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, FP, Lee, N, Wang, K-C, Soong, YK, Huang, KE 2002Effects of estrogen and 1α,25(OH)2, -vitamin D3 on the activity and growth of human primary osteoblast-like cells in vitroFertil Steril77103843CrossRefPubMedGoogle Scholar
  2. 2.
    Rao, LG, Liu, LJ, Murray, TM, McDermott, E, Zhang, X 2003Estrogen added intermittently, but not continuously, stimulates differentiation and bone formation in SaOS-2 cellsBiol Pharm Bull2693645CrossRefPubMedGoogle Scholar
  3. 3.
    Verhaar, HJJ, Damen, CA, Duursma, , Scheven, BAA 1994A comparison of action of progestins and estrogen on the growth and differentiation of normal adult human osteoblast-like cells in vitroBone1530711CrossRefPubMedGoogle Scholar
  4. 4.
    Qu, Q, Perala-Heape, M, Kapanen, A, Dahllund, J, Salo, J, Vaananen, HK, Harkonen, P 1998Estrogen enhances differentiation of osteoblasts in mouse bone marrow cultureBone222019CrossRefPubMedGoogle Scholar
  5. 5.
    Okazaki, R, Inoue, D, Shibata, M, Saika, M, Kido, S, Ooka, H, Tomiyama, H, Sakamoto, Y, Matsumoto, T 2002Estrogen promotes early osteoblast differentiation and inhibits adipocyte differentiation in mouse bone marrow stromal cell lines that express estrogen receptor (ER) alpha or betaEndocrinology143234956CrossRefPubMedGoogle Scholar
  6. 6.
    Schwartz, Z, Neubauer, T, Goldstein, M, Adi, S, Soskolne, WA, Ornoy, A 1991Direct and sex specific enhancement of bone formation and calcification by sex steroids in fetal mice long bone in vitro (biochemical and morphometric study)Endocrinology129116774PubMedGoogle Scholar
  7. 7.
    Morishita, M, Yamamura, T, Shimazu, A, Bachchu, AH, Iwamoto, Y 1999Estradiol enhances the production of mineralized nodules by human periodontal ligament cellsJ Clin Periodontol2674851CrossRefPubMedGoogle Scholar
  8. 8.
    Samuels, A, Perry, MJ, Tobias, JH 1999High-dose estrogen induces de novo medullary bone formation in female miceJ Bone Miner Res1417886PubMedGoogle Scholar
  9. 9.
    Keeting, PE, Scott, RE, Colvard, DS, Han, IK, Spelsberg, TC, Riggs, BL 1991Lack of a direct effect of estrogen on proliferation and differentiation of normal human osteoblast-like cellsJ Bone Miner Res6297304PubMedGoogle Scholar
  10. 10.
    McDougall, KE, Perry, MJ, Gibson, RL, Colley, SM, Korach, KS, Tobias, JH 2003Estrogen receptor-α dependency of estrogen’s stimulatory actin on cancellous bone formation in male miceEndocrinology14419949CrossRefPubMedGoogle Scholar
  11. 11.
    Cao, L, Bu, R, Oakley, JI, Kalla, SE, Blair, HC 2003Estrogen receptor-β modulates synthesis of bone matrix proteins in human osteoblast-like MG63 cellsJ Cell Biochem8915264CrossRefPubMedGoogle Scholar
  12. 12.
    Riggs, BL, Melton, LJ,3rd 1986Involutional osteoporosisN Engl J Med314167686PubMedGoogle Scholar
  13. 13.
    Ornoy, A, Giron, S, Aner, R, Goldstein, M, Boyan, BD, Schwartz, Z 1994Gender dependent effect of testosterone and 17β-estradiol on bone growth and modeling in young miceBone Miner244354PubMedGoogle Scholar
  14. 14.
    Patlas, N, Zadik, Y, Yaffe, P, Schwartz, Z, Ornoy, A 2000Oophorectomy-induced osteopenia in rats in relation to age and time postoophorectomyCells Tissues Organs16626774CrossRefPubMedGoogle Scholar
  15. 15.
    Katzburg, S, Lieberherr, M, Ornoy, A, Klein, BY, Hendel, D, Somjen, D 1999Isolation and hormonal responsiveness of primary cultures of human bone-derived cells: gender and age differencesBone2566773CrossRefPubMedGoogle Scholar
  16. 16.
    Katzburg, S, Ornoy, A, Hendel, D, Lieberherr, M, Kaye, AM, Somjen, D 2000Age and gender specific stimulation of creatine kinase specific activity by gonadal steroids in human bone derived cells in cultureJ Endocrinol Invest2416672Google Scholar
  17. 17.
    Wang, X, Schwartz, Z, Yaffe, P, Ornoy, A 1999The expression of TGF-β and IL-1β mRNA and response to 1,25(OH)2D3, 17β -estradiol and testosterone is age dependent in primary cultures of mouse-derived osteoblasts in vitroEndocrine111322CrossRefPubMedGoogle Scholar
  18. 18.
    Bretaudierre, JP, Spillman, T 1984Alkaline phosphataseBergmeyer, HU eds. Methods of enzymatic analysis9th ed.Verlag ChemicaWeinhein7592Google Scholar
  19. 19.
    Pewterkofsky, B, Diegelmann, R 1971Use of a mixture of proteinase-free collagenases for the specific assay of radioactive collagen in the presence of other proteinsBiochemistry1098894CrossRefPubMedGoogle Scholar
  20. 20.
    Ireland, DC, Bord, S, Beavan, SR, Compston, JE 2002Effects of estrogen on collagen synthesis by cultured human osteoblasts depend on the rate of cellular differentiationJ Cell Biochem862517CrossRefPubMedGoogle Scholar
  21. 21.
    Holzer, G, Einhorn, TA, Majeska, RJ 2002Estrogen regulation of growth and alkaline phosphatase expression by cultured human bone marrow stromal cellsJ Orthop Res202818CrossRefPubMedGoogle Scholar
  22. 22.
    Stein, GS, Lian, JB 1993Molecular mechanisms mediating proliferation / differentiation interrelationships during progressive development of the osteoblast phenotypeEndocrine Rev1442442CrossRefGoogle Scholar
  23. 23.
    Turner, RT, Backup, P, Sherman, PJ, Hill, E, Evans, GL, Spelsberg, TC 1992Mechanism of action of estrogen on intramembranous bone formation: regulation of osteoblast differentiation and activityEndocrinology1318839CrossRefPubMedGoogle Scholar
  24. 24.
    Kung Sutherland, MS, Rao, LG, Muzaffar, SA, Wylie, JN, Wong, MM, McBroom, RJ, Murray, TM 1995Age-dependent expression of osteoblastic phenotypic markers in normal human osteoblasts cultured long-term in the presence of dexamethasoneOsteoporosis Int533543CrossRefGoogle Scholar
  25. 25.
    Farley, JR, Ivey, JL, Baylink, DJ 1980Human skeletal alkaline phosphataseJ Biol Chem25546806PubMedGoogle Scholar
  26. 26.
    Wlodavsky, KH, Reddi, AH 1986Alkaline phosphatase as a marker of osteoinductive cellsCalcif Tissue Int393825PubMedGoogle Scholar
  27. 27.
    Rosen, CJ, Kessenich, CR 1997The pathophysiology and treatment of postmenopausal osteoporosis. An evidence-based approach to estrogen replacement therapyEndocrinol Metab Clin North Am26295311CrossRefPubMedGoogle Scholar
  28. 28.
    Lees, B, Stevenson, JC 2000The prevention of osteoporosis using sequential low-dose hormone replacement therapy with estradiol 17β and dydrogesteroneOsteoporosis Int122518CrossRefGoogle Scholar
  29. 29.
    Torgerson, DJ, Bell-Syer, SEM 2001Hormone replacement therapy and prevention of non-vertebral fractures: a meta-analysis of randomized trialsJAMA28528917CrossRefPubMedGoogle Scholar
  30. 30.
    Zhou, S, Zilberman, Y, Wassermann, K, Bain, SD, Sadovsky, Y, Gazit, D 2001Estrogen modulates estrogen receptor alpha and beta expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic miceJ Cell Biochem81S14455CrossRefGoogle Scholar
  31. 31.
    Mason, RA, Morris, HA 1997Effects of dihydrotestosterne on bone biochemical markers in sham and oophorectomized ratsJ Bone Miner Res1214317PubMedGoogle Scholar
  32. 32.
    van Kesteren, P, Lips, P, Gooren, LJ, Asscheman, H, Megens, J 1998Long-term follow-up of bone mineral density and bone metabolism in transsexuals treated with cross-sex hormonesClin Endocrinol4834754CrossRefGoogle Scholar

Copyright information

© The Society of The Nippon Dental University 2005

Authors and Affiliations

  • Natan Patlas
    • 1
  • Yehuda Zadik
    • 1
  • Pirhya Yaffe
    • 1
  • Michael Patlas
    • 3
  • Zvi Schwartz
    • 2
  • Asher Ornoy
    • 1
    Email author
  1. 1.Laboratory of Teratology, Department of Anatomy and Cell BiologyHebrew University-Hadassah Medical SchoolJerusalemIsrael
  2. 2.Department of PeriodonticsHebrew University-Hadassah School of Dental MedicineJerusalemIsrael
  3. 3.Department of Diagnostic ImagingHamilton General HospitalHamiltonCanada

Personalised recommendations