Advertisement

Journal of Plant Research

, Volume 132, Issue 6, pp 825–837 | Cite as

Universal stress protein in Malus sieversii confers enhanced drought tolerance

  • Meiling Yang
  • Shiyou Che
  • Yunxiu Zhang
  • Hongbin Wang
  • Tao Wei
  • Guorong YanEmail author
  • Wenqin SongEmail author
  • Weiwei YuEmail author
Regular Paper

Abstract

Drought is an important environmental factor that can severely affect plant growth and reproduction. Although many genes related to drought tolerance have been studied in economically important crops, very few genes have been functionally identified in Malus sieversii. In this study, we isolated a new gene based on throughput RNA sequencing analysis and constructed genetic expression vectors and transformed in Arabidopsis thaliana for functional verification. The results showed that MsUspA ectopic expression driven by constitutive (CaMV 35S) promoter gave rise to substantial improvements in ability of transgenic A. thaliana plants to survive under extreme drought conditions. Improved drought resistance mainly depends on more compact cellular structure, longer roots, strong resilience and low-level ROS. Molecular expression analysis showed that MsUspA may be involved in hormone and secondary metabolite synthesis regulation to improve drought resistance.

Keywords

M. sieversii Transcriptome MsUspA Drought stress 

Notes

Author contributions

Conceptualization, WY, WS, GY and MY; methodology, MY and SC; formal analysis, MY, HW, YZ; resources, GY; writing-review and editing, TW; project administration, WS; data curation, WY.

Funding

This research was funded by the National Natural Science Foundation of China (31371682), the Fundamental Research Funds for the Central Universities (ZYGX2014J081).

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.

Supplementary material

10265_2019_1133_MOESM1_ESM.pdf (227 kb)
Supplementary material 1 (PDF 226 kb)

References

  1. Ahmed I, Islam M, Arshad W, Mannan A, Ahmad W, Mirza B (2009) High-quality plant DNA extraction for PCR: an easy approach. J Appl Genet 50:105–107PubMedGoogle Scholar
  2. Altermann E, Klaenhammer TR (2005) Pathway Voyager: pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. BMC Genomics 6:1–7Google Scholar
  3. Bao GG, Zhuo CL, Qian CM, Xiao T, Guo ZF, Lu SY (2016) Co-expression of NCED and ALO improves vitamin C level and tolerance to drought and chilling in transgenic tobacco and stylo plants. Plant Biotechnol J 14:206–214PubMedGoogle Scholar
  4. Bhuria M, Goel P, Kumar S, Singh AK (2016) The promoter of AtUSP is co-regulated by phytohormones and abiotic stresses in Arabidopsis thaliana. Front Plant Sci 7:1957PubMedPubMedCentralGoogle Scholar
  5. Cheng ZJ, Wang L, Sun W, Zhang Y, Zhou C, Su YH, Li W, Sun TT, Zhao XY, Li XG, Cheng Y, Zhao Y, Xie Q, Zhang XS (2013) Pattern of auxin and cytokinin responses for shoot meristem onduction results from the regulation of cytokinin biosynthesis by auxin response factor. Plant Physiol 161:240–251PubMedGoogle Scholar
  6. Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236PubMedGoogle Scholar
  7. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743Google Scholar
  8. Conesa A, Götz S, Garcíagómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674Google Scholar
  9. Drumm JE, Mi K, Bilder P, Sun M, Lim J, Bielefeldtohmann H, Basaraba R, So M, Zhu G, Tufariello JM (2009) Correction: Mycobacterium tuberculosis universal stress protein Rv2623 regulates bacillary growth by ATP-Binding: requirement for establishing chronic persistent infection. Plos Pathogens 5Google Scholar
  10. Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) Auxin response factor1 and auxin response factor2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563–4574PubMedGoogle Scholar
  11. Guttikonda SK, Valliyodan B, Neelakandan AK, Tran L-SP, Kumar R, Quach TN, Voothuluru P, Gutierrez-Gonzalez JJ, Aldrich DL, Pallardy SG, Sharp RE, Ho TH, Nguyen HT (2014) Overexpression of AtDREB1D transcription factor improves drought tolerance in soybean. Molec Biol Rep 41:7995–8008Google Scholar
  12. Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of Δ1-Pyrroline-5-Carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136PubMedPubMedCentralGoogle Scholar
  13. Hutton WE (1953) Ninhydrin staining of tissue sections. Stain Technol 28:173–175PubMedGoogle Scholar
  14. Ibragimova SM, Trifonova EA, Filipenko EA, Shymny VK (2015) Evaluation of salt tolerance of transgenic tobacco plants bearing the P5CS1 gene of Arabidopsis thaliana. Russian J Genet 51:1181–1188Google Scholar
  15. Jain M, Khurana JP (2009) Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J 276:3148–3162PubMedGoogle Scholar
  16. Jiménez S, Dridi J, Gutiérrez D, Moret D, Irigoyen JJ, Moreno MA, Gogorcena Y (2013) Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress. Tree Physiol 00:1–15Google Scholar
  17. Jordon-thaden IE, Chanderbali AS, Gitzendanner MA, Soltis DE (2015) Modified CTAB and TRIZOL protocols improve RNA extraction from chemically complex embryophyta1. Appl Plant Sci 3:1–22Google Scholar
  18. Jung YJ, Melencion SMB, Lee ES, Park JH, Alinapon CV, Oh HT, Yun D-J, Chi YH, Lee SY (2015a) Universal stress protein exhibits a redox-dependent chaperone function in Arabidopsis and enhances plant tolerance to heat shock and oxidative stress. Front Plant Sci 6Google Scholar
  19. Jung YJ, Melencion SMB, Lee ES, Park JH, Alinapon CV, Oh HT, Yun DJ, Yong HC, Sang YL (2015b) Universal stress protein exhibits a redox-dependent chaperone function in Arabidopsis and enhances plant tolerance to heat shock and oxidative stress. Front Plant Sci 6:1141PubMedPubMedCentralGoogle Scholar
  20. Kar M, Mishra D (1976) Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol 57:315–319PubMedPubMedCentralGoogle Scholar
  21. Kerk D, Bulgrien J, Smith DW, Gribskov M (2003) Arabidopsis proteins containing similarity to the universal stress protein domain of bacteria. Plant Physiol 131:1209–1219PubMedPubMedCentralGoogle Scholar
  22. Ksouri N, Jiménez S, Wells CE, Contreras-Moreira B, Gogorcena Y (2016) Transcriptional responses in root and leaf of Prunus persica under drought stress using RNA sequencing. Fronit Plant Sci 7:1715Google Scholar
  23. Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BM, Haag JD, Gould MN, Stewart RM, Kendziorski C (2013) EBSeq: an empirical bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 29:1035–1043PubMedPubMedCentralGoogle Scholar
  24. Li S, Xie Z, Hu C, Zhang J (2016) A review of auxin response factors (ARFs) in plants. Front Plant Sci 7:47PubMedPubMedCentralGoogle Scholar
  25. Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Molec Biol 49:387–400Google Scholar
  26. Loukehaich R, Wang T, Ouyang B, Ziaf K, Li H, Zhang J, Lu Y, Ye Z (2012) SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato. J Exp Bot 63:5593–5606PubMedPubMedCentralGoogle Scholar
  27. Luna CM, Pastori GM, Driscoll S, Groten K, Bernard S, Foyer CH (2005) Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J Exp Bot 56:417–423PubMedGoogle Scholar
  28. Melencion SMB, Chi YH, Pham TT, Paeng SK, Wi SD, Lee C, Ryu SW, Koo SS, Lee SY (2017) RNA chaperone function of a universal stress protein in Arabidopsis confers enhanced cold stress tolerance in plants. Int J Mol Sci 18:2546PubMedCentralGoogle Scholar
  29. O’Toole R, Smeulders MJ, Blokpoel MC, Kay EJ, Lougheed K, Williams HD (2003) A Two-component regulator of universal stress protein expression and adaptation to oxygen starvation in Mycobacterium smegmatis. J Bacteriol 185:1543–1554PubMedPubMedCentralGoogle Scholar
  30. Pandey S, Fartyal D, Agarwal A, Shukla T, James D, Kaul T, Negi YK, Arora S, Reddy MK (2017) Abiotic stress tolerance in plants: myriad roles of ascorbate peroxidase. Front Plant Sci 8:581PubMedPubMedCentralGoogle Scholar
  31. Porcel R, Azcon R, Ruiz-Lozano JM (2004) Evaluation of the role of genes encoding for D1-pyrroline-5-carboxylate synthetase (P5CS) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. Physiol Mol Plant Pathol 65:211–221Google Scholar
  32. Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15:8–15Google Scholar
  33. Pushpika U, Jha RK, Dinkar S, Avinash M, Bhavanath J (2016) Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP) mitigates salt and osmotic stress in transgenic tobacco plants. Front Plant Sci 7:518Google Scholar
  34. Rachid L, Wang T, Bo O, Khurram Z, Li H, Zhang J, Lu Y, Ye Z (2012) SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato. J Exp Bot 63:5593–5606Google Scholar
  35. Sarkar NK, Kim Y-K, Grover A (2014) Co-expression network analysis associated with call of rice seedlings for encountering heat stress. Plant Molec Biol 84:125–143Google Scholar
  36. Schreiber K, Boes N, Eschbach M, Jaensch L, Wehland J, Bjarnsholt T, Givskov M, Hentzer M, Schobert M (2006) Anaerobic survival of Pseudomonas aeruginosa by pyruvate fermentation requires an Usp-type stress protein. J Bacteriol 188:659–668PubMedPubMedCentralGoogle Scholar
  37. Schwarzlander M, Finkemeier I (2013) Mitochondrial energy and redox signaling in plants. Antioxid Redox Signal 18:2122–2144PubMedPubMedCentralGoogle Scholar
  38. Tian F, Gong J, Zhang J, Zhang M, Wang G, Li A, Wang W (2013) Enhanced stability of thylakoid membrane proteins and antioxidant competence contribute to drought stress resistance in the tasg1 wheat stay-green mutant. J Exp Bot 64:1509–1520PubMedPubMedCentralGoogle Scholar
  39. Valvekens D, Montagu MV, Lijsebettens MV (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proceed National Acad Sci USA 85:5536–5540Google Scholar
  40. Wan XL, Zhou Q, Wang YY, Wang WE, Bao MZ, Zhang JW (2015) Identification of heat-responsive genes in carnation (Dianthus caryophyllus L.) by RNA-seq. Front Plant Sci 6:519Google Scholar
  41. Wang B, Guo X, Zhao P, Ruan M, Yu X, Zou L, Yang Y, Li X, Deng D, Xiao J (2017) Molecular diversity analysis, drought related marker-traits association mapping and discovery of excellent alleles for 100-day old plants by EST-SSRs in cassava germplasms (Manihot esculenta Cranz). PLoS One 12:e0177456PubMedPubMedCentralGoogle Scholar
  42. Wei T, Deng K, Gao Y, Liu Y, Yang M, Zhang L, Zheng X, Wang C, Song W, Chen C (2016) Arabidopsis DREB1B in transgenic Salvia miltiorrhiza increased tolerance to drought stress without stunting growth. Plant Physiol Biochem 104:17–28PubMedGoogle Scholar
  43. Wei T, Deng K, Zhang Q, Gao Y, Liu Y, Yang M, Zhang L, Zheng X, Wang C, Liu Z (2017) Modulating AtDREB1C expression improves drought tolerance in Salvia miltiorrhiza. Front Plant Sci 8:52PubMedPubMedCentralGoogle Scholar
  44. Yan G, Long H, Song W, Chen R (2008) Genetic polymorphism of Malus sieversii populations in Xinjiang, China. Genetic Res Crop Evol 55:171–181Google Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Surface-Earth System ScienceTianjin UniversityTianjinChina
  2. 2.College of Life SciencesNankai UniversityTianjinChina
  3. 3.State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
  4. 4.College of Horticulture and LandscapeTianjin Agricultural UniversityTianjinChina

Personalised recommendations