Journal of Plant Research

, Volume 132, Issue 1, pp 3–17 | Cite as

Full plastome sequence of the fern Vandenboschia speciosa (Hymenophyllales): structural singularities and evolutionary insights

  • F. J. Ruiz-Ruano
  • B. Navarro-Domínguez
  • J. P. M. Camacho
  • Manuel A. Garrido-RamosEmail author
Regular Paper


We provide here the first full chloroplast genome sequence, i.e., the plastome, for a species belonging to the fern order Hymenophyllales. The phylogenetic position of this order within leptosporangiate ferns, together with the general scarcity of information about fern plastomes, places this research as a valuable study on the analysis of the diversity of plastomes throughout fern evolution. Gene content of V. speciosa plastome was similar to that in most ferns, although there were some characteristic gene losses and lineage-specific differences. In addition, an important number of genes required U to C RNA editing for proper protein translation and two genes showed start codons alternative to the canonical AUG (AUA). Concerning gene order, V. speciosa shared the specific 30-kb inversion of euphyllophytes plastomes and the 3.3-kb inversion of fern plastomes, keeping the ancestral gene order shared by eusporangiate and early leptosporangiate ferns. Conversely, V. speciosa has expanded IR regions comprising the rps7, rps12, ndhB and trnL genes in addition to rRNA and other tRNA genes, a condition shared with several eusporangiate ferns, lycophytes and hornworts, as well as most seed plants.


Ferns Gene losses IR expansion Non-canonical start codons Plastome RNA editing Vandenboschia speciosa 



This research has been financed by the Spanish Ministerio de Economía y Competitividad and FEDER founds, Grant: CGL2010-14856 (subprograma BOS). The Dirección General de Gestión del Medio Natural y Espacios Protegidos of the Consejería de Medio Ambiente y Ordenación del Territorio de la Junta de Andalucía authorized and facilitates the sampling of the material. We are highly indebted to Carmen Rodríguez Hiraldo and to Jaime Pereña Ortiz who, together with the team of Agentes de Medio Ambiente of the Consejería, helped us with the sampling procedure.

Supplementary material

10265_2018_1077_MOESM1_ESM.pdf (278 kb)
Supplementary material 1 (PDF 277 KB)


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  2. Ben-Menni Schuler SBM, García-López MC, López-Flores I, Nieto-Lugilde M, Suárez-Santiago VN (2017) Genetic diversity and population history of the Killarney fern, Vandenboschia speciosa (Hymenophyllaceae), at its southern distribution limit in continental Europe. Bot J Linn Soc 183:94–105Google Scholar
  3. Brázda V, Laister RC, Jagelská EB, Arrowsmith C (2011) Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol Biol 12:33CrossRefGoogle Scholar
  4. Chaw SM, Chang CC, Chen HL, Li WH (2004) Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes. J Mol Evol 58:424–441CrossRefGoogle Scholar
  5. Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK (2006) The complete chloroplast genome sequence of Pelargonium × hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23:2175–2190CrossRefGoogle Scholar
  6. Drescher A, Ruf S, Calsa T, Carrer H, Bock R (2000) The two largest chloroplast genome encoded open reading frames of higher plants are essential genes. Plant J 22:97–104CrossRefGoogle Scholar
  7. Dubuisson J-Y, Hennequin S, Douzery EJP, Cranfill RB, Smith AR, Pryer KM (2003) rbcL phylogeny of the fern genus Trichomanes (Hymenophyllaceae), with special reference to neotropical taxa. Int J Plant Sci 164:753–761CrossRefGoogle Scholar
  8. Duffy AM, Kelchner SA, Wolf PG (2009) Conservation of selection on matK following an ancient loss of its flanking intron. Gene 438:17–25CrossRefGoogle Scholar
  9. Ebihara A, Iwatsuki K, Ito M, Hennequin S, Dubuisson J-Y (2007) A global molecular phylogeny of the fern genus Trichomanes (Hymenophyllaceae) with special reference to stem anatomy. Bot J Linnean Society 155:1–27CrossRefGoogle Scholar
  10. Gantt JS, Baldauf SL, Calie PJ, Weeden NF, Palmer JD (1991) Transfer of rpl22 to the nucleus greatly preceded its loss from the chloroplast and involved the gain of an intron. EMBO J 10:3073–3078CrossRefGoogle Scholar
  11. Gao L, Yi X, Yang Y-X, Su Y-J, Wang T (2009) Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes. BMC Evol Biol 9:130CrossRefGoogle Scholar
  12. Gao L, Su Y-J, Wang T (2010) Plastid genome sequencing, comparative genomics, and phylogenomics: current status and prospects. J Syst Evol 48:77–93CrossRefGoogle Scholar
  13. Gao L, Zhou Y, Wang Z-W, Su Y-J, Wang T (2011) Evolution of the rpoB-psbZ region in fern plastid genomes: notable structural rearrangements and highly variable intergenic spacers. BMC Plant Biol 11:64CrossRefGoogle Scholar
  14. Gao L, Wang B, Wang Z-W, Zhou Y, Su Y-J, Wang T (2013) Plastome sequences of Lygodium japonicum and Marsilea crenata reveal the genome organization transformation from basal ferns to core leptosporangiates. Genome Biol Evol 5:1403–1407CrossRefGoogle Scholar
  15. Green BR (2011) Chloroplast genomes of photosynthetic eukaryotes. Plant J 66:34–44CrossRefGoogle Scholar
  16. Grewe F, Guo W, Gubbels EA, Hansen AK, Mower JP (2013) Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes. BMC Evol Biol 13:8CrossRefGoogle Scholar
  17. Groth-Malonek M, Wahrmund U, Polsakiewicz M, Knoop V (2007) Evolution of a pseudogene: exclusive survival of a functional mitochondrial nad7 gene supports Haplomitrium as the earliest liverwort lineage and proposes a secondary loss of RNA editing in Marchantiidae. Mol Biol Evol 24:1068–1074CrossRefGoogle Scholar
  18. Guisinger MM, Kuehl JV, Boore JL, Jansen RK (2011) Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Mol Biol Evol 28:583–600CrossRefGoogle Scholar
  19. Guo W, Grewe F, Cobo-Clark A, Fan W, Duan Z, Adams RP, Schwarzbach AE, Mower JP (2014) Predominant and substoichiometric isomers of the plastid genome coexist within Juniperus plants and have shifted multiple times during cupressophyte evolution. Genome Biol Evol 6:580–590CrossRefGoogle Scholar
  20. Guo W, Grewe F, Mower JP (2015) Variable frequency of plastid RNA editing among ferns and repeated loss of uridine-to-cytidine editing from vascular plants. PLoS One 10:e0117075CrossRefGoogle Scholar
  21. Guo Z-Y, Zhang H-R, Shrestha N, Zhang X-C (2016) Complete chloroplast genome of a valuable medicinal plant, Huperzia serrata (Lycopodiaceae), and comparison with its congener. Appl Plant Sci 4:1600071CrossRefGoogle Scholar
  22. Haberle RC, Fourcade HM, Boore JL, Jansen RK (2008) Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes. J Mol Evol 66:350–361CrossRefGoogle Scholar
  23. Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res 41:e129CrossRefGoogle Scholar
  24. Hasebe M, Iwatsuki K (1990) Chloroplast DNA from Adiantum capillus-veneris L., a fern species (Adiantaceae); clone bank, physical map and unusual gene localization in comparison with angiosperm chloroplast DNA. Curr Genet 17:359–364CrossRefGoogle Scholar
  25. Hasebe M, Iwatsuki K (1992) Gene localization on the chloroplast DNA of the maiden hair fern, Adiantum capillus-veneris. J Plant Res 105:413–419Google Scholar
  26. Hausner G, Olson R, Simon D, Johnson I, Sanders ER, Karol KG, McCourt RM, Zimmerly S (2006) Origin and evolution of the chloroplast trnK (matK) intron: a model for evolution of group II intron RNA structures. Mol Biol Evol 23:380–391CrossRefGoogle Scholar
  27. Inagaki H, Ohye T, Kogo H, Tsutsumi M, Kato T, Tong M, Emanuel BS, Kurahashi H (2013) Two sequential cleavage reactions on cruciform DNA structures cause palindrome-mediated chromosomal translocations. Nature Commun 4:1592CrossRefGoogle Scholar
  28. Jansen RK, Cai Z, Raubeson LA et al (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 104:19369–19374CrossRefGoogle Scholar
  29. Jansen RK, Saski C, Lee S, Hansen AK, Daniell H (2011) Complete plastid genome sequences of three rosids (Castanea, Prunus, Theobroma): evidence for at least two independent transfers of rpl22 to the nucleus. Mol Biol Evol 28:835–847CrossRefGoogle Scholar
  30. Karol KG, Arumuganathan K, Boore JL, Duffy AM, Everett KDE, Hall JD, Hansen SK, Kuehl JV, Mandoli DF, Mishler BD, Olmstead RG, Renzaglia KS, Wolf PG (2010) Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages. BMC Evol Biol 10:321CrossRefGoogle Scholar
  31. Kearse MG, Wilusz JE (2017) Non-AUG translation: a new start for protein synthesis in eukaryotes. Genes Dev 31:1717–1731CrossRefGoogle Scholar
  32. Keller J, Rousseau-Gueutin M, Martin GE, Morice J, Boutte J, Coissac E, Ourari M, Aïnouche M, Salmon A, Cabello-Hurtado F, Aïnouche A (2017) The evolutionary fate of the chloroplast and nuclear rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus. DNA Res 24:343–358CrossRefGoogle Scholar
  33. Kim HT, Chung MG, Kim K-J (2014) Chloroplast genome evolution in early diverged leptosporangiate ferns. Mol Cells 37:372–382CrossRefGoogle Scholar
  34. Knie N, Fischer S, Grewe F, Polsakiewicz M, Knoop V (2015) Horsetails are the sister group to all other monilophytes and Marattiales are sister to leptosporangiate ferns. Mol Phyl Evol 90:140–149CrossRefGoogle Scholar
  35. Knie N, Grewe F, Fischer S, Knoop V (2016) Reverse U-to-C editing exceeds C-to-U RNA editing in some ferns—a monilophyte-wide comparison of chloroplast and mitochondrial RNA editing suggests independent evolution of the two processes in both organelles. BMC Evol Biol 16:134CrossRefGoogle Scholar
  36. Kolb J, Chuzhanova NA, Högel J, Vasquez KM, Cooper DN, Bacolla A, Kehrer-Sawatzki H (2009) Cruciform-forming inverted repeats appear to have mediated many of the microinversions that distinguish the human and chimpanzee genomes. Chromosome Res 17:469–483CrossRefGoogle Scholar
  37. Kugita M, Yamamoto Y, Fujikawa T, Matsumoto T, Yoshinaga K (2003) RNA editing in hornwort chloroplasts makes more than half the genes functional. Nucleic Acids Res 31:2417–2423CrossRefGoogle Scholar
  38. Kuo LY, Li FW, Chiou WL, Wang CN (2011) First insights into fern matK phylogeny. Mol Phyl Evol 59:556–566CrossRefGoogle Scholar
  39. Kuroda H, Suzuki H, Kusumegi T, Hirose T, Yukawa Y, Sugiura M (2007) Translation of psbC mRNAs starts from the downstream GUG, not the upstream AUG, and requires the extended Shine–Dalgarno sequence in tobacco chloroplasts. Plant Cell Physiol 48:1374–1378CrossRefGoogle Scholar
  40. Labiak PH, Karol KG (2017) Plastome sequences of an ancient fern lineage reveal remarkable changes in gene content and architecture. Am J Bot 104:1008–1018CrossRefGoogle Scholar
  41. Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359CrossRefGoogle Scholar
  42. Laslett D, Canback B (2004) ARAGORN, a program for the detection of transfer RNA and transfer-messenger RNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16CrossRefGoogle Scholar
  43. Lehtonen S (2011) Towards resolving the complete fern tree of life. PLoS One 6:e24851CrossRefGoogle Scholar
  44. Logacheva MD, KrinitsinaAA, Belenikin MS, Khafizov K, Konorov EA, Kuptsov SV, Speranskaya AS (2017) Comparative analysis of inverted repeats of polypod fern (Polypodiales) plastomes reveals two hypervariable regions. Plant Biol 17:255Google Scholar
  45. Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41:W575–W581CrossRefGoogle Scholar
  46. Lowe TM, Chan PP (2016) tRNAscan-SE on-line: search and contextual analysis of transfer RNA genes. Nucleic Acids Res 44:W54–W57CrossRefGoogle Scholar
  47. Lu J-M, Zhang N, Du X-Y, Wen J, Li D-Z (2015) Chloroplast phylogenomics resolves key relationships in ferns. J Syst Evol 53:448–457CrossRefGoogle Scholar
  48. Novák P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792–793CrossRefGoogle Scholar
  49. Obermayer R, Leitch IJ, Hanson L, Bennett MD (2002) Nuclear DNA C-values in 30 species double the familial representation in pteridophytes. Ann Bot 90:209–217CrossRefGoogle Scholar
  50. Park M, Park H, Lee H, Lee B, Lee J (2018) The complete plastome sequence of an Antarctic bryophyte Sanionia uncinata (Hedw.) Loeske. Int J Mol Sci 19:709CrossRefGoogle Scholar
  51. Pfitzinger H, Weil JH, Pillay DT, Guillemaut P (1990) Codon recognition mechanisms in plant chloroplasts. Plant Mol Biol 14:805–814CrossRefGoogle Scholar
  52. PPG I (2016) A community-derived classification for extant lycophytes and ferns. J Syst Evol 54:563–603CrossRefGoogle Scholar
  53. Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD (2001) Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409:618–622CrossRefGoogle Scholar
  54. Pryer KM, Schuettpelz E, Wolf PG, Schneider H, Smith AR, Cranfill R (2004) Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. Am J Bot 91:1582–1598CrossRefGoogle Scholar
  55. Qi X, Kuo L-Y, Guo C, Li H, Li Z et al (2018) A well-resolved fern nuclear phylogeny reveals the evolution history of numerous transcription factor families. Mol Phylogenet Evol 127:961–977CrossRefGoogle Scholar
  56. Rai HS, Graham SW (2010) Utility of a large, multigene plastid data set in inferring higher-order relationships in ferns and relatives (monilophytes). Am J Bot 97:1444–1456CrossRefGoogle Scholar
  57. Raubeson LA, Jansen RK (1992) Chloroplast genomes of plants. In: Henry RJ (ed) Plant diversity and evolution: genotypic and phenotypic variation in higher plants. CABI Publishing, London, pp 45–68Google Scholar
  58. Rice P, Longden I, Bleasby A (2000) EMBOSS: the european molecular biology open software suite. Trends Genet 16:276–277CrossRefGoogle Scholar
  59. Roper JM, Hansen SK, Wolf PG, Karol KG, Mandoli DF, Everett KDE, Kuehl J, Boore JL (2007) The complete plastid genome sequence of Angiopteris evecta (G. Forst.) Hoffm. (Marattiaceae). Am Fern J 97:95–106CrossRefGoogle Scholar
  60. Rothfels CJ, Li F-W, Sigel EM, Huiet L, Larsson A et al (2015) The evolutionary history of ferns inferred from 25 low-copy nuclear genes. Am J Bot 102:1089–1107CrossRefGoogle Scholar
  61. Rüdinger M, Volkmar U, Lenz H, Groth-Malonek M, Knoop V (2012) Nuclear DYW-type PPR gene families diversify with increasing RNA editing frequencies in liverwort and moss mitochondria. J Mol Evol 74:37–51CrossRefGoogle Scholar
  62. Ruhlman TA, Jansen RK (2014) The plastid genomes of flowering plants. In: Maliga P (ed) Chloroplast biotechnology: methods and protocols. Methods in molecular biology, vol 1132. Springer Science + Business Media, New York, pp 3–38CrossRefGoogle Scholar
  63. Rumsey FJ, Vogel JC, Russell SJ, Barrett JA, Gibby M (1999) Population genetics and conservation biology of the endangered fern Trichomanes speciosum (Hymenophyllaceae) in Scotland. Biol J Linn Soc 66:333–344Google Scholar
  64. Schuettpelz E, Pryer KM (2007) Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes. Taxon 56:1037–1050CrossRefGoogle Scholar
  65. Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG (2006) A classification for extant ferns. Taxon 55:705–731CrossRefGoogle Scholar
  66. Song M, Kuo L-Y, Huiet L, Pryer KM, Rothfels CJ, Li F-W (2018) A novel chloroplast gene reported for flagellate plants. Am J Bot 105:117–121CrossRefGoogle Scholar
  67. Sugiura M (2008) RNA editing in chloroplasts. In: Göringer HU (ed) RNA editing. Nucleic acids and molecular biology, vol 20. Springer, BerlinGoogle Scholar
  68. Sun Y, Moore MJ, Zhang S, Soltis PS, Soltis DE, Zhao T, Meng A, Li X, Li J, Wang H (2016) Phylogenomic and structural analyses of 18 complete plastomes across nearly all families of early-diverging eudicots, including an angiosperm-wide analysis of IR gene content evolution. Mol Phylogenet Evol 96:93–101CrossRefGoogle Scholar
  69. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192CrossRefGoogle Scholar
  70. Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S (2017) GeSeq—versatile and accurate annotation of organelle genomes. Nucleic Acids Res 45:W6–W11CrossRefGoogle Scholar
  71. Tsuji S, Ueda K, Nishiyama T, Hasebe M, Yoshikawa S, Konagaya A, Nishiuchi T, Yamaguchi K (2007) The chloroplast genome from a lycophyte (microphyllophyte), Selaginella uncinata, has a unique inversion, transpositions and many gene losses. J Plant Res 120:281–290CrossRefGoogle Scholar
  72. Wicke S, Quandt D (2009) Universal primers for the amplification of the plastid trnK/matK region in land plants. Anales Jard Bot Madrid 66:285–288CrossRefGoogle Scholar
  73. Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76:273–297CrossRefGoogle Scholar
  74. Wolf PG, Karol KG (2012) Plastomes of bryophytes, lycophytes and ferns. In: Bock R, Knoop V (eds) Advances in photosynthesis and respiration. Genomics of chloroplasts and mitochondria, vol 35. Springer, Dordrecht, pp 89–102Google Scholar
  75. Wolf PG, Rowe CA, Sinclair RB, Hasebe M (2003) Complete nucleotide sequence of the chloroplast genome from a leptosporangiate fern, Adiantum capillus-veneris L. DNA Res 10:59–65CrossRefGoogle Scholar
  76. Wolf PG, Rowe CA, Hasebe M (2004) High levels of RNA editing in a vascular plant chloroplast genome: analysis of transcripts from the fern Adiantum capillus-veneris. Gene 339:89–97CrossRefGoogle Scholar
  77. Wolf PG, Karol KG, Mandolib DF, Kuehld J, Arumuganathane K, Ellisa MW, Mishler BD, Kelchf DG, Olmstead RG, Boore JL (2005) The first complete chloroplast genome sequence of a lycophyte, Huperzia lucidula (Lycopodiaceae). Gene 350:117–128CrossRefGoogle Scholar
  78. Wolf PG, Roper JM, Duffy AM (2010) The evolution of chloroplast genome structure in ferns. Genome 53:731–738CrossRefGoogle Scholar
  79. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255CrossRefGoogle Scholar
  80. Xu J-H, Liu Q, Hua W, Wang T, Xue Q, Messing J (2015) Dynamics of chloroplast genomes in green plants. Genomics 106:221–231CrossRefGoogle Scholar
  81. Zhong B, Fong R, Collins LJ, McLenachan PA, Penny D (2014) Two new fern chloroplasts and decelerated evolution linked to the long generation time in tree ferns. Genome Biol Evol 6:1166–1173CrossRefGoogle Scholar
  82. Zhu A, Guo W, Gupta S, Fan W, Mower JP (2016) Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytol 209:1747–1756CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • F. J. Ruiz-Ruano
    • 1
  • B. Navarro-Domínguez
    • 1
  • J. P. M. Camacho
    • 1
  • Manuel A. Garrido-Ramos
    • 1
    Email author
  1. 1.Departamento de Genética, Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations