Journal of Plant Research

, Volume 131, Issue 1, pp 37–47 | Cite as

Cell–cell communications and molecular mechanisms in plant sexual reproduction

JPR Symposium Semi-in-vivo Developmental Biology

Abstract

Sexual reproduction is achieved by precise interactions between male and female reproductive organs. In plant fertilization, sperm cells are carried to ovules by pollen tubes. Signals from the pistil are involved in elongation and control of the direction of the pollen tube. Genetic, reverse genetic, and cell biological analyses using model plants have identified various factors related to the regulation of pollen tube growth and guidance. In this review, I summarize the mechanisms and molecules controlling pollen tube growth to the ovule, micropylar guidance, reception of the guidance signal in the pollen tube, rupture of the pollen tube to release sperm cells, and cessation of the tube guidance signal. I also briefly introduce various techniques used to analyze pollen tube guidance in vitro.

Keywords

Plant sexual reproduction Pollen tube guidance Synergid cell Gamete fusion Lab-on-a-chip 

Notes

Acknowledgements

Author thank Ms. Ryoko Tsukamoto for providing pictures in Figure 2. This work was supported in part by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology for Innovative Areas (15H04385 and 16H06465) and Grant-in-Aid for Scientific Research (B) (15H01231) to MMK.

References

  1. Agudelo CG, Sanati Nezhad A, Ghanbari M, Naghavi M, Packirisamy M, Geitmann A (2013) TipChip: a modular, MEMS-based platform for experimentation and phenotyping of tip-growing cells. Plant J 73:1057–1068.  https://doi.org/10.1111/tpj.12093 PubMedCrossRefGoogle Scholar
  2. Agudelo C, Packirisamy M, Geitmann A (2016) Influence of electric fields and conductivity on pollen tube growth assessed via electrical lab-on-chip. Sci Rep 6:19812.  https://doi.org/10.1038/srep19812 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alvarez J, Smyth DR (1999) CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS. Development 126:2377–2386PubMedGoogle Scholar
  4. Beale KM, Leydon AR, Johnson MA (2012) Gamete fusion is required to block multiple pollen tubes from entering an Arabidopsis ovule. Curr Biol 22:1090–1094.  https://doi.org/10.1016/j.cub.2012.04.041 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bianchi E, Doe B, Goulding D, Wright GJ (2014) Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature 508:483–487.  https://doi.org/10.1038/nature13203 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Boex-Fontvieille E, Rustgi S, Reinbothe S, Reinbothe C (2015) A Kunitz-type protease inhibitor regulates programmed cell death during flower development in Arabidopsis thaliana. J Exp Bot.  https://doi.org/10.1093/jxb/erv327 PubMedGoogle Scholar
  7. Boisson-Dernier A, Lituiev DS, Nestorova A, Franck CM, Thirugnanarajah S, Grossniklaus U (2013) ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases. PLoS Biol 11:e1001719.  https://doi.org/10.1371/journal.pbio.1001719 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Broz AK, Guerrero RF, Randle AM, Baek YS, Hahn MW, Bedinger PA (2017) Transcriptomic analysis links gene expression to unilateral pollen-pistil reproductive barriers. BMC Plant Biol 17:81.  https://doi.org/10.1186/s12870-017-1032-4 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Capron A, Gourgues M, Neiva LS et al (2008) Maternal control of male-gamete delivery in Arabidopsis involves a putative GPI-anchored protein encoded by the LORELEI gene. Plant Cell 20:3038–3049.  https://doi.org/10.1105/tpc.108.061713 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chae K, Kieslich CA, Morikis D, Kim SC, Lord EM (2009) A gain-of-function mutation of Arabidopsis lipid transfer protein 5 disturbs pollen tube tip growth and fertilization. Plant Cell 21:3902–3914.  https://doi.org/10.1105/tpc.109.070854 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chen JC, Fang SC (2016) The long pollen tube journey and in vitro pollen germination of Phalaenopsis orchids. Plant Reprod 29:179–188.  https://doi.org/10.1007/s00497-016-0280-z PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chen Y-H, Li H-J, Shi D-Q et al (2007) The central cell plays a critical role in pollen tube guidance in Arabidopsis. Plant Cell 19:3563–3577PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cheung AY, Wang H, Wu HM (1995) A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82:383–393PubMedCrossRefGoogle Scholar
  14. Crawford BC, Yanofsky MF (2011) HALF FILLED promotes reproductive tract development and fertilization efficiency in Arabidopsis thaliana. Development 138:2999–3009.  https://doi.org/10.1242/dev.067793 PubMedCrossRefGoogle Scholar
  15. Crawford BC, Ditta G, Yanofsky MF (2007) The NTT gene is required for transmitting-tract development in carpels of Arabidopsis thaliana. Curr Biol 17:1101–1108.  https://doi.org/10.1016/j.cub.2007.05.079 PubMedCrossRefGoogle Scholar
  16. Dai XR, Gao XQ, Chen GH, Tang LL, Wang H, Zhang XS (2014) ABNORMAL POLLEN TUBE GUIDANCE1, an endoplasmic reticulum-localized mannosyltransferase homolog of GLYCOSYLPHOSPHATIDYLINOSITOL10 in yeast and PHOSPHATIDYLINOSITOL GLYCAN ANCHOR BIOSYNTHESIS B in human, is required for Arabidopsis pollen tube micropylar guidance and embryo development. Plant Physiol 165:1544–1556.  https://doi.org/10.1104/pp.114.236133 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Denninger P, Bleckmann A, Lausser A et al (2014) Male–female communication triggers calcium signatures during fertilization in Arabidopsis. Nat Commun 5:4645.  https://doi.org/10.1038/ncomms5645 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dong J, Kim ST, Lord EM (2005) Plantacyanin plays a role in reproduction in Arabidopsis. Plant Physiol 138:778–789.  https://doi.org/10.1104/pp.105.063388 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Duan QH, Kita D, Johnson EA, Aggarwal M, Gates L, Wu HM, Cheung AY (2014) Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat Commun.  https://doi.org/10.1038/Ncomms4129 Google Scholar
  20. Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang WC, Grossniklaus U (2007) The FERONIA receptor-like kinase mediates male–female interactions during pollen tube reception. Science 317:656–660.  https://doi.org/10.1126/science.1143562 PubMedCrossRefGoogle Scholar
  21. Fedry J, Liu Y, Péhau-Amaudet G et al (2017) The ancient gamete fusogen HAP2 is a eukaryotic class II fusion protein. Cell 168:904.e910–915.e910.  https://doi.org/10.1016/j.cell.2017.01.024 CrossRefGoogle Scholar
  22. Gao QF, Gu LL, Wang HQ et al (2016) Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis. Proc Natl Acad Sci U S A 113:3096–3101.  https://doi.org/10.1073/pnas.1524629113 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Gao H, Zhang Y, Wang W et al (2017) Two membrane-anchored aspartic proteases contribute to pollen and ovule development. Plant Physiol 173:219–239.  https://doi.org/10.1104/pp.16.01719 PubMedCrossRefGoogle Scholar
  24. Ghanbari M, Nezhad AS, Agudelo CG, Packirisamy M, Geitmann A (2014) Microfluidic positioning of pollen grains in lab-on-a-chip for single cell analysis. J Biosci Bioeng 117:504–511.  https://doi.org/10.1016/j.jbiosc.2013.10.001 PubMedCrossRefGoogle Scholar
  25. Goto H, Okuda S, Mizukami A, Mori H, Sasaki N, Kurihara D, Higashiyama T (2011) Chemical visualization of an attractant peptide, LURE. Plant Cell Physiol 52:49–58.  https://doi.org/10.1093/pcp/pcq191 PubMedCrossRefGoogle Scholar
  26. Grossmann G, Guo WJ, Ehrhardt DW, Frommer WB, Sit RV, Quake SR, Meier M (2011) The RootChip: an integrated microfluidic chip for plant science. Plant Cell 23:4234–4240.  https://doi.org/10.1105/tpc.111.092577 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gui CP, Dong X, Liu H-K et al (2014) Overexpression of the tomato pollen receptor kinase LePRK1 rewires pollen tube growth to a blebbing mode. Plant Cell 26:3538–3555.  https://doi.org/10.1105/tpc.114.127381 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hafidh S, Fila J, Honys D (2016a) Male gametophyte development and function in angiosperms: a general concept. Plant Reprod 29:31–51.  https://doi.org/10.1007/s00497-015-0272-4 PubMedCrossRefGoogle Scholar
  29. Hafidh S, Potesil D, Fila J, Capkova V, Zdrahal Z, Honys D (2016b) Quantitative proteomics of the tobacco pollen tube secretome identifies novel pollen tube guidance proteins important for fertilization. Genome Biol 17:81.  https://doi.org/10.1186/s13059-016-0928-x PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hamamura Y, Saito C, Awai C et al (2011) Live-cell imaging reveals the dynamics of two sperm cells during double fertilization in Arabidopsis thaliana. Curr Biol 21:497–502.  https://doi.org/10.1016/j.cub.2011.02.013 PubMedCrossRefGoogle Scholar
  31. Hamamura Y, Nishimaki M, Takeuchi H, Geitmann A, Kurihara D, Higashiyama T (2014) Live imaging of calcium spikes during double fertilization in Arabidopsis. Nat Commun 5:4722.  https://doi.org/10.1038/ncomms5722 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR (2014) A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343:408–411.  https://doi.org/10.1126/science.1244454 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Higashiyama T, Hamamura Y (2008) Gametophytic pollen tube guidance. Sex Plant Reprod 21:17–26.  https://doi.org/10.1007/s00497-007-0064-6 CrossRefGoogle Scholar
  34. Higashiyama T, Takeuchi H (2015) The mechanism and key molecules involved in pollen tube guidance. Annu Rev Plant Biol 66:393–413.  https://doi.org/10.1146/annurev-arplant-043014-115635 PubMedCrossRefGoogle Scholar
  35. Higashiyama T, Yang WC (2017) Gametophytic pollen tube guidance: attractant peptides, gametic controls, and receptors. Plant Physiol 173:112–121.  https://doi.org/10.1104/pp.16.01571 PubMedCrossRefGoogle Scholar
  36. Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima S, Kuroiwa H, Kuroiwa T (2001) Pollen tube attraction by the synergid cell. Science 293:1480–1483.  https://doi.org/10.1126/science.1062429 PubMedCrossRefGoogle Scholar
  37. Higashiyama T, Inatsugi R, Sakamoto S et al (2006) Species preferentiality of the pollen tube attractant derived from the synergid cell of Torenia fournieri. Plant Physiol 142:481491.  https://doi.org/10.1104/pp.106.083832 CrossRefGoogle Scholar
  38. Horade M, Kanaoka MM, Kuzuya M, Higashiyama T, Kaji N (2013) A microfluidic device for quantitative analysis of chemoattraction in plants. Rsc Adv 3:22301–22307.  https://doi.org/10.1039/c3ra42804d CrossRefGoogle Scholar
  39. Hou Y, Guo X, Cyprys P et al (2016) Maternal ENODLs are required for pollen tube reception in Arabidopsis. Curr Biol 26:2343–2350.  https://doi.org/10.1016/j.cub.2016.06.053 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hu C, Munglani G, Vogler H et al (2016) Characterization of size-dependent mechanical properties of tip-growing cells using a lab-on-chip device. Lab Chip 17:82–90.  https://doi.org/10.1039/c6lc01145d PubMedCrossRefGoogle Scholar
  41. Hu C, Vogler H, Aellen M et al (2017) High precision, localized proton gradients and fluxes generated by a microelectrode device induce differential growth behaviors of pollen tubes. Lab Chip 17:671–680.  https://doi.org/10.1039/c6lc01307d PubMedCrossRefGoogle Scholar
  42. Huang WJ, Liu HK, McCormick S, Tang WH (2014) Tomato pistil factor STIG1 promotes in vivo pollen tube growth by binding to phosphatidylinositol 3-phosphate and the extracellular domain of the pollen receptor kinase LePRK2. Plant Cell 26:2505–2523.  https://doi.org/10.1105/tpc.114.123281 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Huang J, Chen D, Yan H et al (2017) Acetylglutamate kinase is required for both gametophyte function and embryo development in Arabidopsis thaliana. J Integr Plant Biol.  https://doi.org/10.1111/jipb.12536 Google Scholar
  44. Huck N, Moore JM, Federer M, Grossniklaus U (2003) The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130:2149–2159PubMedCrossRefGoogle Scholar
  45. Jiao J, Mizukami AG, Sankaranarayanan S, Yamguchi J, Itami K, Higashiyawma T (2017) Structure-activity relation of AMOR sugar molecule that activates pollen-tubes for ovular guidance. Plant Physiol 173:354–363.  https://doi.org/10.1104/pp.16.01655 PubMedCrossRefGoogle Scholar
  46. Kanaoka MM, Higashiyama T (2015) Peptide signaling in pollen tube guidance. Curr Opin Plant Biol 28:127–136.  https://doi.org/10.1016/j.pbi.2015.10.006 PubMedCrossRefGoogle Scholar
  47. Kanaoka MM, Kawano N, Matsubara Y, Susaki D, Okuda S, Sasaki N, Higashiyama T (2011) Identification and characterization of TcCRP1, a pollen tube attractant from Torenia concolor. Ann Bot 108:739–747.  https://doi.org/10.1093/aob/mcr111 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kasahara RD, Portereiko MF, Sandaklie-Nikolova L, Rabiger DS, Drews GN (2005) MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. Plant Cell 17:2981–2992.  https://doi.org/10.1105/tpc.105.034603 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kasahara RD, Maruyama D, Hamamura Y, Sakakibara T, Twell D, Higashiyama T (2012) Fertilization recovery after defective sperm cell release in Arabidopsis. Curr Biol 22:1084–1089.  https://doi.org/10.1016/j.cub.2012.03.069 PubMedCrossRefGoogle Scholar
  50. Kasahara RD, Notaguchi M, Nagahara S et al (2016) Pollen tube contents initiate ovule enlargement and enhance seed coat development without fertilization. Sci Adv 2:e1600554.  https://doi.org/10.1126/sciadv.1600554 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kaya H, Nakajima R, Iwano M et al (2014) Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell 26:1069–1080.  https://doi.org/10.1105/tpc.113.120642 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kessler SA, Shimosato-Asano H, Keinath NF, Wuest SE, Ingram G, Panstruga R, Grossniklaus U (2010) Conserved molecular components for pollen tube reception and fungal invasion. Science 330:968–971.  https://doi.org/10.1126/science.1195211 PubMedCrossRefGoogle Scholar
  53. Kim S, Mollet JC, Dong J, Zhang K, Park SY, Lord EM (2003) Chemocyanin, a small basic protein from the lily stigma, induces pollen tube chemotropism. Proc Natl Acad Sci USA 100:16125–16130.  https://doi.org/10.1073/pnas.2533800100 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kurihara D, Mizuta Y, Sato Y, Higashiyama T (2015) ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development 142:4168–4179.  https://doi.org/10.1242/dev.127613 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lassig R, Gutermuth T, Bey TD, Konrad KR, Romeis T (2014) Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J 78:94–106.  https://doi.org/10.1111/tpj.12452 PubMedCrossRefGoogle Scholar
  56. Lee JS, Kuroha T, Hnilova M et al (2012) Direct interaction of ligand–receptor pairs specifying stomatal patterning. Genes Dev 26:126–136.  https://doi.org/10.1101/gad.179895.111 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Leshem Y, Johnson C, Sundaresan V (2013) Pollen tube entry into the synergid cell of Arabidopsis is observed at a site distinct from the filiform apparatus. Plant Reprod 26:93–99.  https://doi.org/10.1007/s00497-013-0211-1 PubMedCrossRefGoogle Scholar
  58. Leydon AR, Beale KM, Woroniecka K et al (2013) Three MYB transcription factors control pollen tube differentiation required for sperm release. Curr Biol 23:1209–1214.  https://doi.org/10.1016/j.cub.2013.05.021 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Li HJ, Xue Y, Jia D-J et al (2011) POD1 regulates pollen tube guidance in response to micropylar female signaling and acts in early embryo patterning in Arabidopsis. Plant Cell 23:3288–3302.  https://doi.org/10.1105/tpc.111.088914 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Li S, Ge F-R, Xu M et al (2013) Arabidopsis COBRA-LIKE 10, a GPI-anchored protein, mediates directional growth of pollen tubes. Plant J 74:486–497.  https://doi.org/10.1111/tpj.12139 PubMedCrossRefGoogle Scholar
  61. Li C, Yeh F-L, Cheung AY et al. (2015a) Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. Elife.  https://doi.org/10.7554/eLife.06587 Google Scholar
  62. Li HJ, Zhu S-S, Zhang M-X et al (2015b) Arabidopsis CBP1 is a novel regulator of transcription initiation in central cell-mediated pollen tube guidance. Plant Cell 27:2880–2893.  https://doi.org/10.1105/tpc.15.00370 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Liang Y, Tan Z-M, Zhu L et al (2013) MYB97, MYB101 and MYB120 function as male factors that control pollen tube-synergid interaction in Arabidopsis thaliana fertilization. PLoS Genet 9:e1003933.  https://doi.org/10.1371/journal.pgen.1003933 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lin SY, Chen PW, Chuang MH, Juntawong P, Bailey-Serres J, Jauh GY (2014) Profiling of translatomes of in vivo-grown pollen tubes reveals genes with roles in micropylar guidance during pollination in Arabidopsis. Plant Cell 26:602–618.  https://doi.org/10.1105/tpc.113.121335 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lindner H, Kessler SA, Muller LM, Shimosato-Asano H, Boisson-Dernier A, Grossniklaus U (2015) TURAN and EVAN mediate pollen tube reception in Arabidopsis synergids through protein glycosylation. PLoS Biol.  https://doi.org/10.1371/journal.pbio.1002139 Google Scholar
  66. Ling Y, Zhang C, Chen T et al (2012) Mutation in SUMO E3 ligase, SIZ1, disrupts the mature female gametophyte in Arabidopsis. PLoS One 7:e29470.  https://doi.org/10.1371/journal.pone.0029470 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Liu J, Zhong S, Guo X et al (2013) Membrane-bound RLCKs LIP1 and LIP2 are essential male factors controlling male–female attraction in Arabidopsis. Curr Biol 23:993–998.  https://doi.org/10.1016/j.cub.2013.04.043 PubMedCrossRefGoogle Scholar
  68. Losada JM, Herrero M, Hormaza JI, Friedman WE (2014) Arabinogalactan proteins mark stigmatic receptivity in the protogynous flowers of Magnolia virginiana (Magnoliaceae). Am J Bot 101:1963–1975.  https://doi.org/10.3732/ajb.1400280 PubMedCrossRefGoogle Scholar
  69. Lyu N, Du W, Wang XF (2017) Unique growth paths of heterospecific pollen tubes result in late entry into ovules in the gynoecium of Sagittaria (Alismataceae). Plant Biol (Stuttg) 19:108–114.  https://doi.org/10.1111/plb.12508 CrossRefGoogle Scholar
  70. Marton ML, Dresselhaus T (2010) Female gametophyte-controlled pollen tube guidance. Biochem Soc Trans 38:627–630.  https://doi.org/10.1042/BST0380627 PubMedCrossRefGoogle Scholar
  71. Marton ML, Cordts S, Broadhvest J, Dresselhaus T (2005) Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307:573–576.  https://doi.org/10.1126/science.1104954 PubMedCrossRefGoogle Scholar
  72. Maruyama D, Higashiyama T (2016) The end of temptation: the elimination of persistent synergid cell identity. Curr Opin Plant Biol 34:122–126.  https://doi.org/10.1016/j.pbi.2016.10.011 PubMedCrossRefGoogle Scholar
  73. Maruyama D, Völz R, Takeuchi H et al (2015) Rapid elimination of the persistent synergid through a cell fusion mechanism. Cell 161:907–918.  https://doi.org/10.1016/j.cell.2015.03.018 PubMedCrossRefGoogle Scholar
  74. Mishima M, Takayama S, Sasaki K, Jee JG, Kojima C, Isogai A, Shirakawa M (2003) Structure of the male determinant factor for Brassica self-incompatibility. J Biol Chem 278:36389–36395.  https://doi.org/10.1074/jbc.M305305200 PubMedCrossRefGoogle Scholar
  75. Mizukami AG, Inatsugi R, Jiao J et al (2016) The AMOR arabinogalactan sugar chain induces pollen-tube competency to respond to ovular guidance. Curr Biol 26:1091–1097.  https://doi.org/10.1016/j.cub.2016.02.040 PubMedCrossRefGoogle Scholar
  76. Mizuta Y, Kurihara D, Higashiyama T (2015) Two-photon imaging with longer wavelength excitation in intact Arabidopsis tissues. Protoplasma.  https://doi.org/10.1007/s00709-014-0754-5 PubMedGoogle Scholar
  77. Mollet JC, Park SY, Nothnagel EA, Lord EM (2000) A lily stylar pectin is necessary for pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12:1737–1750PubMedPubMedCentralCrossRefGoogle Scholar
  78. Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T (2006) GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat Cell Biol 8:64–71.  https://doi.org/10.1038/ncb1345 PubMedCrossRefGoogle Scholar
  79. Mori T, Igawa T, Tamiya G, Miyagishima SY, Berger F (2014) Gamete attachment requires GEX2 for successful fertilization in Arabidopsis. Curr Biol 24:170–175.  https://doi.org/10.1016/j.cub.2013.11.030 PubMedCrossRefGoogle Scholar
  80. Okuda S, Tsutsui H, Shiina K et al (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–361.  https://doi.org/10.1038/nature07882 PubMedCrossRefGoogle Scholar
  81. Park SY, Jauh GY, Mollet JC, Eckard KJ, Nothnagel EA, Walling LL, Lord EM (2000) A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12:151–164PubMedPubMedCentralCrossRefGoogle Scholar
  82. Pereira AM, Lopes AL, Coimbra S (2016a) Arabinogalactan proteins as interactors along the crosstalk between the pollen tube and the female tissues. Front Plant Sci 7:1895.  https://doi.org/10.3389/fpls.2016.01895 PubMedPubMedCentralGoogle Scholar
  83. Pereira AM, Lopes AL, Coimbra S (2016b) JAGGER, an AGP essential for persistent synergid degeneration and polytubey block in Arabidopsis. Plant Signal Behav 11:e1209616.  https://doi.org/10.1080/15592324.2016.1209616 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Pereira AM, Nobre MS, Pinto SC, Lopes AL, Costa ML, Masiero S, Coimbra S (2016c) “Love is strong, and you’re so sweet”: JAGGER is essential for persistent synergid degeneration and polytubey block in Arabidopsis thaliana. Mol Plant 9:601–614.  https://doi.org/10.1016/j.molp.2016.01.002 PubMedCrossRefGoogle Scholar
  85. Pinello JF, Lai AL, Millet JK, Cassidy-Hanley D, Freed JH, Clark TG (2017) Structure–function studies link class II viral fusogens with the ancestral gamete fusion protein HAP2. Curr Biol 27:651–660.  https://doi.org/10.1016/j.cub.2017.01.049 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Qu LJ, Li L, Lan Z, Dresselhaus T (2015) Peptide signalling during the pollen tube journey and double fertilization. J Exp Bot 66:5139–5150.  https://doi.org/10.1093/jxb/erv275 PubMedCrossRefGoogle Scholar
  87. Rao P, Chen Z, Yang X et al (2017) Dynamic transcriptomic analysis of the early response of female flowers of Populus alba × P. glandulosa to pollination. Sci Rep 7:6048.  https://doi.org/10.1038/s41598-017-06255-3 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Rotman N, Rozier F, Boavida L, Dumas C, Berger F, Faure JE (2003) Female control of male gamete delivery during fertilization in Arabidopsis thaliana. Curr Biol 13:432–436PubMedCrossRefGoogle Scholar
  89. Sanati Nezhad A, Ghanbari M, Agudelo CG, Naghavi M, Packirisamy M, Bhat RB, Geitmann A (2014a) Optimization of flow assisted entrapment of pollen grains in a microfluidic platform for tip growth analysis. Biomed Microdev 16:23–33.  https://doi.org/10.1007/s10544-013-9802-8 CrossRefGoogle Scholar
  90. Sanati Nezhad A, Packirisamy M, Geitmann A (2014b) Dynamic, high precision targeting of growth modulating agents is able to trigger pollen tube growth reorientation. Plant J 80:185–195.  https://doi.org/10.1111/tpj.12613 PubMedCrossRefGoogle Scholar
  91. Sato Y, Sugimoto N, Higashiyama T, Arata H (2015) Quantification of pollen tube attraction in response to guidance by female gametophyte tissue using artificial microscale pathway. J Biosci Bioeng 120:697–700.  https://doi.org/10.1016/j.jbiosc.2015.03.021 PubMedCrossRefGoogle Scholar
  92. Shamsudhin N, Laeubli N, Atakan HB et al (2016) Massively parallelized pollen tube guidance and mechanical measurements on a lab-on-a-chip platform. PLoS One 11:e0168138.  https://doi.org/10.1371/journal.pone.0168138 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Shimizu KK (2002) Ecology meets molecular genetics in Arabidopsis. Popul Ecol 44:221–233.  https://doi.org/10.1007/s101440200025 CrossRefGoogle Scholar
  94. Shimizu KK, Okada K (2000) Attractive and repulsive interactions between female and male gametophytes in Arabidopsis pollen tube guidance. Development 127:4511–4518PubMedGoogle Scholar
  95. Shimizu KK, Ito T, Ishiguro S, Okada K (2008) MAA3 (MAGATAMA3) helicase gene is required for female gametophyte development and pollen tube guidance in Arabidopsis thaliana. Plant Cell Physiol 49:1478–1483.  https://doi.org/10.1093/pcp/pcn130 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 98:10763–10768.  https://doi.org/10.1073/pnas.181141598 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Silverstein KA, Moskal WA Jr, Wu HC, Underwood BA, Graham MA, Town CD, VandenBosch KA (2007) Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J 51:262–280.  https://doi.org/10.1111/j.1365-313X.2007.03136.x PubMedCrossRefGoogle Scholar
  98. Sprunck S, Rademacher S, Vogler F, Gheyselinck J, Grossniklaus U, Dresselhaus T (2012) Egg cell-secreted EC1 triggers sperm cell activation during double fertilization. Science 338:1093–1097.  https://doi.org/10.1126/science.1223944 PubMedCrossRefGoogle Scholar
  99. Stonebloom S et al (2016) A DUF-246 family glycosyltransferase-like gene affects male fertility and the biosynthesis of pectic arabinogalactans. BMC Plant Biol 16:90.  https://doi.org/10.1186/s12870-016-0780-x PubMedPubMedCentralCrossRefGoogle Scholar
  100. Takahashi T, Honda K, Mori T, Igawa T (2017) Loss of GCS1/HAP2 does not affect the ovule-targeting behavior of pollen tubes. Plant Reprod.  https://doi.org/10.1007/s00497-017-0305-2 PubMedGoogle Scholar
  101. Takayama S et al (2001) Direct ligand–receptor complex interaction controls Brassica self-incompatibility. Nature 413:534–538.  https://doi.org/10.1038/35097104 PubMedCrossRefGoogle Scholar
  102. Takeuchi H, Higashiyama T (2012) A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLoS Biol 10:e1001449.  https://doi.org/10.1371/journal.pbio.1001449 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Takeuchi H, Higashiyama T (2016) Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature 531:245–248.  https://doi.org/10.1038/nature17413 PubMedCrossRefGoogle Scholar
  104. Tang W, Kelley D, Ezcurra I, Cotter R, McCormick S (2004) LeSTIG1, an extracellular binding partner for the pollen receptor kinases LePRK1 and LePRK2, promotes pollen tube growth in vitro. Plant J 39:343–353.  https://doi.org/10.1111/j.1365-313X.2004.02139.x PubMedCrossRefGoogle Scholar
  105. Tsukamoto T, Qin Y, Huang Y, Dunatunga D, Palanivelu R (2010) A role for LORELEI, a putative glycosylphosphatidylinositol-anchored protein, in Arabidopsis thaliana double fertilization and early seed development. Plant J 62:571–588.  https://doi.org/10.1111/j.1365-313X.2010.04177.x PubMedCrossRefGoogle Scholar
  106. Uebler S, Dresselhaus T, Marton ML (2013) Species-specific interaction of EA1 with the maize pollen tube apex. Plant Signal Behav.  https://doi.org/10.4161/psb25682 PubMedPubMedCentralGoogle Scholar
  107. Valansi C, Moi D, Leikina E et al (2017) Arabidopsis HAP2/GCS1 is a gamete fusion protein homologous to somatic and viral fusogens. J Cell Biol 216:571–581.  https://doi.org/10.1083/jcb.201610093 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Volz R, Heydlauff J, Ripper D, von Lyncker L, Gross-Hardt R (2013) Ethylene signaling is required for synergid degeneration and the establishment of a pollen tube block. Dev Cell 25:310–316.  https://doi.org/10.1016/j.devcel.2013.04.001 PubMedCrossRefGoogle Scholar
  109. Wang JG, Feng C, Liu HH, Ge FR, Li S, Li HJ, Zhang Y (2016a) HAPLESS13-mediated trafficking of STRUBBELIG is critical for ovule development in Arabidopsis. PLoS Genet 12:e1006269.  https://doi.org/10.1371/journal.pgen.1006269 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Wang T, Liang L, Xue Y et al (2016b) A receptor heteromer mediates the male perception of female attractants in plants. Nature 531:241–244.  https://doi.org/10.1038/nature16975 PubMedCrossRefGoogle Scholar
  111. Wang Y, Tsukamoto T, Noble JA, Liu X, Mosher R, Palanivelu R (2017) Arabidopsis LORELEI, a maternally-expressed imprinted gene, promotes early seed development. Plant Physiol.  https://doi.org/10.1104/pp.17.00427 Google Scholar
  112. Wasag P, Suwinska A, Zakrzewski P, Walczewski J, Lenartowski R, Lenartowska M (2017) Calreticulin localizes to plant intra/extracellular peripheries of highly specialized cells involved in pollen–pistil interactions. Protoplasma.  https://doi.org/10.1007/s00709-017-1134-8 PubMedPubMedCentralGoogle Scholar
  113. Wong JL, Johnson MA (2010) Is HAP2-GCS1 an ancestral gamete fusogen? Trends Cell Biol 20:134–141.  https://doi.org/10.1016/j.tcb.2009.12.007 PubMedCrossRefGoogle Scholar
  114. Wu HM, Wong E, Ogdahl J, Cheung AY (2000) A pollen tube growth-promoting arabinogalactan protein from nicotiana alata is similar to the tobacco TTS protein. Plant J 22:165–176PubMedCrossRefGoogle Scholar
  115. Xu Y, Yang J, Wang Y et al (2017) OsCNGC13 promotes seed-setting rate by facilitating pollen tube growth in stylar tissues. PLoS Genet 13:e1006906.  https://doi.org/10.1371/journal.pgen.1006906 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Yanagisawa N, Sugimoto N, Arata H, Higashiyama T, Sato Y (2017) Capability of tip-growing plant cells to penetrate into extremely narrow gaps. Sci Rep 7:1403.  https://doi.org/10.1038/s41598-017-01610-w PubMedPubMedCentralCrossRefGoogle Scholar
  117. Yetisen AK, Jiang L, Cooper JR, Qin Y, Palanivelu R, Zohar Y (2011) A microsystem-based assay for studying pollen tube guidance in plant reproduction. J Micromech Microeng.  https://doi.org/10.1088/0960-1317/21/5/054018 Google Scholar
  118. Zhou LZ, Juranic M, Dresselhaus T (2017) Germline development and fertilization mechanisms in maize. Mol Plant 10:389–401.  https://doi.org/10.1016/j.molp.2017.01.012 PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Graduate School of ScienceNagoya UniversityNagoyaJapan

Personalised recommendations