Journal of Plant Research

, Volume 130, Issue 6, pp 999–1012 | Cite as

Viridiuvalis adhaerens gen. et sp. nov., a novel colony-forming chlorarachniophyte

  • Takashi Shiratori
  • Sakuya Fujita
  • Tenma Shimizu
  • Takeshi Nakayama
  • Ken-ichiro Ishida
Regular Paper


A new chlorarachniophyte, Viridiuvalis adhaerens gen. et sp. nov. was isolated from the mucus on a coral reef from Zanpa Beach, Okinawa, Japan. The main vegetative stage of V. adhaerens consisted of unicellular coccoid cells with cell walls, although sarcinoid colonies and uniflagellate zoospores were also observed. V. adhaerens had chloroplasts with nucleomorphs and pyrenoids that were completely embedded in the chloroplast. A deep plate-like invagination of the periplastidal compartment (PPC) almost partitioned the pyrenoid and chloroplast components, which were surrounded by two membranes. The nucleomorph was positioned in the base of the invagination of the PPC. Molecular phylogenetic analyses using rRNA genes showed that V. adhaerens branched as a sister lineage of the Amorphochlora clade. The sarcinoid colony, pyrenoid embedded in the chloroplast, and nucleomorph located at the base of the deep invagination of the PPC have not been reported in other chlorarachniophytes. Based on these morphological and ultrastructural characteristics and the results of the molecular phylogenetic analyses, we propose V. adhaerens as a new genus and species of chlorarachniophyte.


Chlorarachniophyceae Chlorarachniophycota Phylogeny Taxonomy Viridiuvalis adhaerens Ultrastructure 



This work was supported by JSPS KAKENHI Grant Number 13J00587.


  1. Calderon-Saenz E, Schnetter R (1987) Cryptochlora perforans, a new genus and species of algae (Chlorarachniophyta), capable of penetrating dead algal filaments. Plant Syst Evol 158:69–71CrossRefGoogle Scholar
  2. Calderon-Saenz E, Schnetter R (1989) Morphology, biology, and systematics of Cryptochlora perforans (Chlorarachniophyta), a phagotrophic marine alga. Plant Syst Evol 163:165–176CrossRefGoogle Scholar
  3. Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182CrossRefPubMedGoogle Scholar
  4. Dietz C, Ehlers K, Wilhelm C, Gil-Rodríguez MC, Schnetter R (2003) Lotharella polymorpha sp. nov. (Chlorarachniophyta) from the coast of Portugal. Phycologia 42:582–593CrossRefGoogle Scholar
  5. Geitler L (1930) Ein grünes Filarplasmodium und andere neue Protisten. Arch Protistenkd 69:615–636Google Scholar
  6. Gile GH, Stern RF, James ER, Keeling PJ (2010) DNA barcoding of chlorarachniophytes using nucleomorph ITS sequences. J Phycol 46:743–750CrossRefGoogle Scholar
  7. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224CrossRefPubMedGoogle Scholar
  8. Hanaichi T, Sato T, Hoshino M, Mizuno N (1986) A stable lead stain by modification of Sato’s method. Proc XIth Int Cong Electron Microscopy, Kyoto, pp 2181–2182Google Scholar
  9. Hibberd DJ, Norris RE (1984) Cytology and ultrastructure of Chlorarachnion reptans (Chlorarachniophyta divisio nova, Chlorarachniophyceae classis nova). J Phycol 20:310–330CrossRefGoogle Scholar
  10. Ishida K, Hara Y (1994) Taxonomic studies on the Chlorarachniophyta. I. Chlorarachnion globosum sp. nov. Phycologia 33:351–358CrossRefGoogle Scholar
  11. Ishida K, Nakayama T, Hara Y (1996) Taxonomic studies on the Chlorarachniophyta. II. Generic delimitation of the chlorarachniophytes and description of Gymnochlora stellata gen. et sp. nov. and Lotharella gen. nov. Phycol Res 44:37–45CrossRefGoogle Scholar
  12. Ishida K, Cao Y, Hasegawa M, Okada N, Hara Y (1997) The origin of chlorarachniophyte plastids, as inferred from phylogenetic comparisons of amino acid sequences of EF-Tu. J Mol Evol 45:682–687CrossRefPubMedGoogle Scholar
  13. Ishida K, Ishida N, Hara Y (2000) Lotharella amoeboformis sp. nov.: a new species of chlorarachniophytes from Japan. Phycol Res 48:221–229CrossRefGoogle Scholar
  14. Ishida K, Yabuki A, Ota S (2007) The chlorarachniophytes: evolution and classification. In: Brodie J, Lewis J (eds) Unravelling the algae: the past, present, and future of algal systematics. CRC Press, Taylor & Francis Group, Boca Raton, pp 171–182Google Scholar
  15. Ishida K, Yabuki A, Ota S (2011) Research note: Amorphochlora amoebiformis gen. et comb. nov. (Chlorarachniophyceae). Phycol Res 59:52–53CrossRefGoogle Scholar
  16. Kasai F, Kawachi M, Erata M, Mori F, Yumoto K, Sato M, Ishimoto M (2009) NIES-collection. List of strains, 8th edn. Jpn J Phycol (Sôrui) 57:1–350Google Scholar
  17. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefPubMedPubMedCentralGoogle Scholar
  18. Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 365:729–748CrossRefPubMedPubMedCentralGoogle Scholar
  19. McFadden GI, Gilson PR, Waller RF (1995) Molecular phylogeny of chlorarachniophytes based on plastid rRNA and rbcL sequences. Arch Protistenkd 145:231–239CrossRefGoogle Scholar
  20. Moestrup Ø, Sengco M (2001) Ultrastructural studies on Bigelowiella natans, gen. et sp. nov., a chlorarachniophyte flagellate. J Phycol 37:624–646CrossRefGoogle Scholar
  21. Ota S, Vaulot D (2012) Lotharella reticulosa sp. nov.: a highly reticulated network forming chlorarachniophyte from the Mediterranean Sea. Protist 163:91–104CrossRefPubMedGoogle Scholar
  22. Ota S, Ueda K, Ishida K (2005) Lotharella vacuolata sp. nov., a new species of chlorarachniophyte algae, and time-lapse video observations on its unique post-cell division behavior. Phycol Res 53:275–286CrossRefGoogle Scholar
  23. Ota S, Ueda K, Ishida K (2007a) Taxonomic study of Bigelowiella longifila sp. nov. (Chlorarachniophyta) and a time-lapse video observation on the unique migration of amoeboid cells. J Phycol 43:333–343CrossRefGoogle Scholar
  24. Ota S, Ueda K, Ishida K (2007b) Norrisiella sphaerica gen. et sp. nov., a new coccoid chlorarachniophyte from Baja California, Mexico. J Plant Res 120:661–670CrossRefPubMedGoogle Scholar
  25. Ota S, Silver TD, Archibald JM, Ishida K (2009a) Lotharella oceanica sp. nov.—a new planktonic chlorarachniophyte studied by light and electron microscopy. Phycologia 48:315–323CrossRefGoogle Scholar
  26. Ota S, Vaulot D, Le Gall F, Yabuki A, Ishida K (2009b) Partenskyella glossopodia gen. et sp. nov., the first report of a chlorarachniophyte that lacks a pyrenoid. Protist 160:137–150CrossRefPubMedGoogle Scholar
  27. Ota S, Kudo A, Ishida K (2011) Gymnochlora dimorpha sp. nov., a chlorarachniophyte with unique daughter cell behaviour. Phycologia 50:317–326CrossRefGoogle Scholar
  28. Ponce-Toledo RI, Deschamps P, López-García P, Zivanovic Y, Benzerara K, Moreira D (2017) An early-branching freshwater cyanobacterium at the origin of plastids. Curr Biol 27:386–391CrossRefPubMedGoogle Scholar
  29. Ronquist F, Teslenko M, von der Mark P, Ayres DL, Darlig A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sato T (1968) A modified method for lead staining of thin sections. J Electron Microsc 17:158–159Google Scholar
  31. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313CrossRefPubMedPubMedCentralGoogle Scholar
  32. Suzuki S, Hirakawa Y, Kofuji R, Sugita M, Ishida K (2016) Plastid genome sequences of Gymnochlora stellata, Lotharella vacuolata, and Partenskyella glossopodia reveal remarkable structural conservation among chlorarachniophyte species. J Plant Res 129:581–590CrossRefPubMedGoogle Scholar
  33. Van de Peer Y, Rensing SA, Maier U-G, De Wachter R (1996) Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae. Proc Natl Acad Sci USA 93:7732–7736CrossRefPubMedPubMedCentralGoogle Scholar
  34. Yabuki A, Inagaki Y, Ishida K (2010) Palpitomonas bilix gen. et sp. nov.: a novel deep-branching heterotroph possibly related to Archaeplastida or Hacrobia. Protist 161:523–538CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK 2017

Authors and Affiliations

  • Takashi Shiratori
    • 1
  • Sakuya Fujita
    • 2
  • Tenma Shimizu
    • 3
  • Takeshi Nakayama
    • 1
  • Ken-ichiro Ishida
    • 1
  1. 1.Faculty of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  2. 2.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  3. 3.Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan

Personalised recommendations