Journal of Plant Research

, Volume 130, Issue 3, pp 527–538 | Cite as

Morphological analysis of vessel elements for systematic study of three Zingiberaceae tribes

  • Kathlyn Vasconcelos Gevú
  • Helena Regina Pinto Lima
  • John Kress
  • Maura Da Cunha
Regular Paper

Abstract

Zingiberaceae containing over 1,000 species that are divided into four subfamilies and six tribes. In recent decades, there has been an increase in the number of studies about vessel elements in families of monocotyledon. However, there are still few studies of Zingiberaceae tribes. This study aims to establish systematic significance of studying vessel elements in two subfamilies and three tribes of Zingiberaceae. The vegetative organs of 33 species processed were analysed by light and scanning electron microscopy and Principal Component Analysis was used to elucidate genera boundaries. Characteristics of vessel elements, such as the type of perforation plate, the number of bars and type of parietal thickening, are proved to be important for establishing the relationship among taxa. Scalariform perforation plate and the scalariform parietal thickening are frequent in Zingiberaceae and may be a plesiomorphic condition for this taxon. In the Principal Component Analysis, the most significant characters of the vessel elements were: simple perforation plates and partially pitted parietal thickening, found only in Alpinieae tribe, and 40 or more bars composing the plate in Elettariopsis curtisii, Renealmia chrysotricha, Zingiber spectabile, Z. officinale, Curcuma and Globba species. Vessel elements characters of 18 species of Alpinieae, Zingibereae and Globbeae were first described in this work.

Keywords

Alpinoideae Globbeae Monocotyledon Root Xylem Zingiberoideae 

References

  1. Benedict JC, Smith SY, Collinson ME, Leong-Skornicková J, Specht CD, Marone F, Xiao X Parkinson DY (2015) Seed morphology and anatomy and its utility in recognizing subfamilies and tribes of Zingiberaceae. Am J Bot 102:1–28. doi:10.3732/ajb.1500300 CrossRefGoogle Scholar
  2. Brodersen CR, Mcelrone AJ (2013) Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants. Front Plant Sci 4:1–11. doi:10.3389/fpls.2013.00108 CrossRefGoogle Scholar
  3. Carlquist S (2001) Comparative wood anatomy. Spinger, BerlinCrossRefGoogle Scholar
  4. Carlquist S (2012) Monocot xylem revisited: new information, new paradigms. Bot Rev 78:87–153. doi:10.1139/B2012-048 CrossRefGoogle Scholar
  5. Carlquist S, Schneider EL (1998) Origin and Nature of vessels in monocotyledons. 5. Araceae subfamily Colocasioideae. Bot J Linn Soc 128:71–86. doi:10.1006/bojl.1998.0181 CrossRefGoogle Scholar
  6. Carlquist S, Schneider EL (2006) Origin and nature of vessels in monocotyledons. 8. Orchidaceae. Am J Bot 93:963–971. doi:10.3732/ajb.93.7.963 CrossRefPubMedGoogle Scholar
  7. Carlquist S, Schneider EL (2007) Origin and nature of vessels in monocotyledons. 9. Sansevieria. S Afr J Bot 73:196–203. doi:10.1016/j.sajb.2006.11.002 CrossRefGoogle Scholar
  8. Carlquist S, Schneider EL (2010a) Origin and nature of vessels in monocotyledons. 11. Primary xylem microstructure, with examples from Zingiberales. Int J Plant Sci 171:258–266. doi:10.1086/650160 CrossRefGoogle Scholar
  9. Carlquist S, Schneider EL (2010b) Origin and nature of vessels in monocotyledons. 12. pit membrane microstructure diversity in tracheary elements of Astelia. Pac Sci 64:607–618. doi:10.2984/64.4.607 CrossRefGoogle Scholar
  10. Carlquist S, Schneider EL (2014) Origins and nature of vessels in monocotyledons. 14. Vessellessness in Orontioideae (Araceae): adaptation or relictualism? Nord J Bot 32:493–502. doi:10.1111/j.1756-1051.2013.00408.x CrossRefGoogle Scholar
  11. Chalk L (1989) Wood anatomy, phylogeny, and taxonomy. In: Metcalfe CR, Chalk L (eds) Anatomy of the dicotyledons. Oxford University Press, Oxford, pp 108–125Google Scholar
  12. Cheadle VI (1942) The occurrence and types of vessels in various organs of the plant in the Monocotyledoneae. Am J Bot 29:441–450CrossRefGoogle Scholar
  13. Cheadle VI, Kosakai H (1980) Ocurrence and specialization of vessels in Commelinales. Phytomorphology 30:98–117Google Scholar
  14. Cheadle VI, Kosakai H (1982) Ocurrence and specialization of vessels in Xyridales. Nord J Bot 2:97–109. doi:10.1111/j.1756-1051.1982.tb01168.x CrossRefGoogle Scholar
  15. Cochard H, Ewers FW, Tyree MT (1994) Water relations of a tropical vine-like bamboo (Rhipidocladum racemiflorum): root pressures, vulnerability to cavitation and seasonal changes in embolism. J Exp Bot 45:1085–1089. doi:10.1093/jxb/45.8.1085 CrossRefGoogle Scholar
  16. Cysneiros VC, Pereira-Moura MVL, Paula EP, Braz DM (2011) Arboreal Eudicotyledons, Universidade Federal Rural do Rio de Janeiro Botanical Garden, state of Rio de Janeiro, Brazil, Check List 7:pp 1–6Google Scholar
  17. Ewers FW, Cochard H, Tyree MT (1997) A survey of root pressures in vines of a tropical lowland forest. Oecologia 110:191–196. doi:10.1007/s004420050149 CrossRefPubMedGoogle Scholar
  18. Fisher JB, Angeles G, Ewers FW, Lopes-Portillo J (1997) Survey of root pressure in tropical vines and woody species. Int J Plant Sci 158:44–50CrossRefGoogle Scholar
  19. Franklin GL (1945) Preparation of thin sections of synthetic resin and wood-resin composites, and a new macerating method for wood. Nature 155:51CrossRefGoogle Scholar
  20. Gevu KV, Da Cunha M, Barros CF, Lima HRP (2014) Structural analysis of subterranean organs in Zingiberaceae. Plant Syst Evol 300:1089–1098. doi:10.1007/s00606-013-0947-y CrossRefGoogle Scholar
  21. Holttum RE (1950) The Zingiberaceae of the Malay Peninsula. Gard Bull Singap 13:1–249Google Scholar
  22. Jensen WA (1962) Botanical histochemistry: principles and pratice. WH Freeman & Company, San FranciscoGoogle Scholar
  23. Johansen DA (1940) Plant microtechinique, 3rd edn. MacGraw-Hill Book Company, Inc, New YorkGoogle Scholar
  24. Judd WS, Campbell CS, Kellog EA, Stevens PF, Donoghue MJ (2009) Sistemática vegetal: um enfoque filogenético, 3rd edn. Artmed, Porto AlegreGoogle Scholar
  25. Kress WJ, Prince LM, Williams KJ (2002) The phylogeny and a new classification of the gingers (Zingiberaceae): evidence from molecular data. Am J Bot 89:10. doi:10.3732/ajb0.1682 CrossRefGoogle Scholar
  26. Kress WJ, Liu A, Newman M, Li Q (2005) The molecular phylogeny of Alpinia (Zingiberaceae): a complex and polyphyletic genus of gingers. Am J Bot 92:167–178. doi:10.3732/ajb.92.1.167 CrossRefPubMedGoogle Scholar
  27. Larsen K, Lock J, Mass H, Mass PJM (1998) Zingiberaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 4. Springer, Berlin, pp 474–495Google Scholar
  28. Lima WG, Guedes-Bruni RR (2004) Myrceugenia (Myrtaceae) ocorrentes no Parque Nacional do Itatiaia, Rio de Janeiro. Rodriguésia 55:73–94Google Scholar
  29. Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org
  30. Miranda EE, Colombini F (2009) Jardins Botânicos do Brasil. Metalivros, São Paulo, p 173Google Scholar
  31. Pace MR, Botânico MP, Angyalossy V (2011) Diversity of metaxylem vessel elements in three Syagrus palms (Arecaceae) of different habits. Acta Bot Bras 25:315–323. doi:10.1590/S0102-33062011000200007 CrossRefGoogle Scholar
  32. Pedersen LB (2004) Phylogenetic analysis of the subfamily Alpinioideae (Zingiberaceae), particularly Etlingera Giseke, based on nuclear and plastid DNA. Plant Syst Evol 245:239–258. doi:10.1007/s00606-004-0126-2 CrossRefGoogle Scholar
  33. Petersen OG (1889) Musaceae, Zingiberaceae, Cannaceae, Marantaceae. In: Engler HGA, Prantl KAE (eds) Die Natürlichen Pflanzenfamilien, vol 1. Verlag von Wilhelm Engelmann, Leipzig, pp 1–30Google Scholar
  34. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
  35. Rodrigues AC, Estelita ME (2009) Diferenciação dos feixes vasculares e dos elementos traqueais no rizoma de algumas Cyperaceae. Rev Bras Bot 32:349–359. doi:10.1590/S0100-84042009000200014 CrossRefGoogle Scholar
  36. Rodrigues AC, Cavalcanti TA, Lima RS, Estelita MEM (2007) Elementos de vaso do sistema subterrâneo de cinco espécies de Cyperus L. (Cyperaceae) ocorrentes na Caatinga paraibana. INSULA 36:27–37Google Scholar
  37. Scheneider EL, Carlquist S (2005) Origin and nature of vessels in monocotyledons. 6. Hanguana (Hanguanaceae). Pac Sci 59:393–398. doi:10.1353/psc.2005.0040 CrossRefGoogle Scholar
  38. Souza VC, Lorenzi H (2012) Botânica Sistemática: Guia ilustrado para identificação das famílias de Fanerógamas nativas e exóticas no Brasil, baseado em APG III, 3rd edn. Nova Odessa, Instituto Plantarum de Estudos da Flora LTDA, São Paulo, pp 203–204Google Scholar
  39. Sperry JS (1986) Relationship of xylem embolism to xylem pres-sure potential, stomatal closure, and shoot morphology in the palm Rhapis excelsa. Plant Physiol 80:110–116CrossRefPubMedPubMedCentralGoogle Scholar
  40. Storck-Tonon D, Morato EF, Oliveira ML (2009) Fauna de Euglossina (Hymenoptera: Apidae) da Amazônia Sul-Ocidental, Acre, Brasil. ACTA Amazonica 39:693–706. doi:10.1590/S0044-59672009000300026 CrossRefGoogle Scholar
  41. Thorsch JA (2000) Vessels in Zingiberaceae: a light, scanning, and transmission microscope study. J IAWA 21:61–76. doi:10.1163/22941932-90000237 CrossRefGoogle Scholar
  42. Thorsch JA, Cheadle VI (1996) Vessels in Eriocaulaceae. J IAWA 17:183–204. doi:10.1163/22941932-90001449 CrossRefGoogle Scholar
  43. Tomlinson PB (1956) Studies in the systematic anatomy of the Zingiberaceae. Bot J Linn Soc 55:547–592. doi:10.1111/j.1095-8339.1956.tb00023.x CrossRefGoogle Scholar
  44. Tomlinson PB (1969) Classification of the Zingiberales (Scitamineae) with special reference to anatomical evidences. In: Metcalfe CR (ed) Anatomy of the monocotyledons, vol 3. Clarendon Press, Oxford, pp 224–302Google Scholar
  45. Uma E, Muthukumar T (2014) Comparative root morphological anatomy of Zingiberaceae. Syst Biodivers 12:195–209. doi:10.1080/14772000.2014.894593 CrossRefGoogle Scholar
  46. Wagner P (1977) Vessel types of the monocotyledons: a survey. Bot Notiser 130:383–402Google Scholar
  47. Wang F, Tian X, Ding Y, Wan X, Tyree MT (2011) A survey of root pressure in 53 Asian species of bamboo. Ann For Sci 68:783–791. doi:10.1007/s13595-011-0075-1 CrossRefGoogle Scholar
  48. Williams KJ, Kress WJ, Manos P (2004) The phylogeny, evolution, and classification of the genus Globba and tribe Globbeae (Zingiberaceae): appendages do matter. Am J Bot 91:100–114. doi:10.3732/ajb.91.1.100 CrossRefPubMedGoogle Scholar
  49. Xia Y, Kress WJ, Prince LM (2004) Phylogenetic analysis of Amomum (Alpinioideae: Zingiberaceae) using ITS and matK DNA sequence data. Syst Bot 29:334–344. doi:10.1600/036364404774195520 CrossRefGoogle Scholar
  50. Yang SJ, Zhang YJ, Sun M, Goldstein G, Cao KF (2012) Recovery of diurnal depression of leaf hydraulic conductance in a subtropical woody bamboo species: embolism refilling by nocturnal root pressure. Tree Physiol 32:414–422. doi:10.1093/treephys/tps028 CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2017

Authors and Affiliations

  • Kathlyn Vasconcelos Gevú
    • 1
    • 2
  • Helena Regina Pinto Lima
    • 2
  • John Kress
    • 3
  • Maura Da Cunha
    • 1
  1. 1.Laboratório de Biologia Celular e Tecidual, Centro de Biociências e BiotecnologiaUniversidade Estadual do Norte Fluminense Darcy RibeiroCampos dos GoytacazesBrazil
  2. 2.Departamento de Botânica, Instituto de Biologia, Caixa PostalUniversidade Federal Rural do Rio de Janeiro–UFRRJSeropédicaBrazil
  3. 3.Department of Botany, MRC-166, United States National Herbarium, National Museum of Natural HistorySmithsonian InstitutionWashington, DCUSA

Personalised recommendations