Journal of Plant Research

, Volume 129, Issue 6, pp 1165–1178 | Cite as

Plant Aurora kinases interact with and phosphorylate transcription factors

  • Mai Takagi
  • Takuya Sakamoto
  • Ritsuko Suzuki
  • Keiichirou Nemoto
  • Takeshi Obayashi
  • Takeshi Hirakawa
  • Tomoko M. Matsunaga
  • Daisuke Kurihara
  • Yuko Nariai
  • Takeshi Urano
  • Tatsuya Sawasaki
  • Sachihiro Matsunaga
Regular Paper
  • 497 Downloads

Abstract

Aurora kinase (AUR) is a well-known mitotic serine/threonine kinase that regulates centromere formation, chromosome segregation, and cytokinesis in eukaryotes. In addition to regulating mitotic events, AUR has been shown to regulate protein dynamics during interphase in animal cells. In contrast, there has been no identification and characterization of substrates and/or interacting proteins during interphase in plants. The Arabidopsis thaliana genome encodes three AUR paralogues, AtAUR1, AtAUR2, and AtAUR3. Among them, AtAUR1 and AtAUR2 are considered to function redundantly. Here, we confirmed that both AtAUR1 and AtAUR3 are localized in the nucleus and cytoplasm during interphase, suggesting that they have functions during interphase. To identify novel interacting proteins, we used AlphaScreen to target 580 transcription factors (TFs) that are mainly functional during interphase, using recombinant A. thaliana TFs and AtAUR1 or AtAUR3. We found 133 and 32 TFs had high potential for interaction with AtAUR1 and AtAUR3, respectively. The highly AtAUR-interacting TFs were involved in various biological processes, suggesting the functions of the AtAURs during interphase. We found that AtAUR1 and AtAUR3 showed similar interaction affinity to almost all TFs. However, in some cases, the interaction affinity differed substantially between the two AtAUR homologues. These results suggest that AtAUR1 and AtAUR3 have both redundant and distinct functions through interactions with TFs. In addition, database analysis revealed that most of the highly AtAUR-interacting TFs contained a detectable phosphopeptide that was consistent with the consensus motifs for human AURs, suggesting that these TFs are substrates of the AtAURs. The AtAURs phosphorylated several highly interacting TFs in the AlphaScreen in vitro. Overall, in line with the regulation of TFs through interaction, our results indicate the possibility of phosphoregulation of several TFs by the AtAURs (280/300).

Keywords

Aurora kinase Transcription factors AlphaScreen Wheat germ cell-free protein synthesis In vitro phosphorylation assay with ATPγS 

Supplementary material

10265_2016_860_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1665 kb)

References

  1. Alexander J, Lim D, Joughin BA, Hegemann B, Hutchins JRA, Ehrenberger T, Ivins F, Sessa F, Hudecz O, Nigg EA, Fry AM, Musacchio A, Stukenberg PT, Mechtler K, Peters JM, Smerdon SJ, Yaffe MB (2011) Spatial exclusivity combined with positive and negative selection of phosphorylation motifs is the basis for context-dependent mitotic signaling. Sci Signal 4:ra42Google Scholar
  2. Allen JJ, Li M, Brinkworth CS, Paulson JL, Wang D, Hubner A, Chou W-H, Davis RJ, Burlingame AL, Messing RO, Katayama CD, Hedrick SM, Shokat KM (2007) A semisynthetic epitope for kinase substrates. Nat Meth 4:511–516CrossRefGoogle Scholar
  3. Ban R, Matsuzaki H, Akashi T, Sakashita G, Taniguchi H, Park SY, Tanaka H, Furukawa K, Urano T (2009) Mitotic regulation of the stability of microtubule plus-end tracking protein EB3 by ubiquitin ligase SIAH-1 and Aurora mitotic kinases. J Biol Chem 284:28367–28381CrossRefPubMedPubMedCentralGoogle Scholar
  4. Berardini TZ, Mundodi S, Reiser L, Huala E, Garcia-Hernandez M, Zhang PF, Mueller LA, Yoon J, Doyle A, Lander G, Moseyko N, Yoo D, Xu I, Zoeckler B, Montoya M, Miller N, Weems D, Rhee SY (2004) Functional annotation of the Arabidopsis genome using controlled vocabularies. Plant Physiol 135:745–755CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bhatt AA, Etchells JP, Canales C, Lagodienko A, Dickinson H (2004) VAAMANA—a BEL1-like homeodomain protein, interacts with KNOX proteins BP and STM and regulates inflorescence stem growth in Arabidopsis. Gene 328:103–111CrossRefPubMedGoogle Scholar
  6. Demidov D, Van Damme D, Geelen D, Blattner FR, Houben A (2005) Identification and dynamics of two classes of Aurora-like kinases in arabidopsis and other plants. Plant Cell 17:836–848CrossRefPubMedPubMedCentralGoogle Scholar
  7. Frangini A, Sjoeberg M, Roman-Trufero M, Dharmalingam G, Haberle V, Bartke T, Lenhard B, Malumbres M, Vidal M, Dillon N (2013) The aurora B kinase and the polycomb protein Ring1B combine to regulate active promoters in quiescent lymphocytes. Mol Cell 51:647–661CrossRefPubMedGoogle Scholar
  8. Fujiwara T, Hirai MY, Chino M, Komeda Y, Naito S (1992) Effects of sulfur nutrition on expression of the soybean seed storage protein genes in transgenic petunia. Plant Physiol 99:263–268CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hengeveld RCC, Hertz NT, Vromans MJM, Zhang C, Burlingame AL, Shokat KM, Lens SMA (2012) Development of a chemical genetic approach for human aurora B kinase identifies novel substrates of the chromosomal passenger complex. Mol Cell Proteom 11:47–59CrossRefGoogle Scholar
  10. Kawabe A, Matsunaga S, Nakagawa K, Kurihara D, Yoneda A, Hasezawa S, Uchiyama S, Fukui K (2005) Characterization of plant Aurora kinases during mitosis. Plant Mol Biol 58:1–13CrossRefPubMedGoogle Scholar
  11. Kettenbach AN, Schweppe DK, Faherty BK, Pechenick D, Pletnev AA, Gerber SA (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4:rs5Google Scholar
  12. Koizumi K, Wu S, MacRae-Crerar A, Gallagher KL (2011) An essential protein that interacts with endosomes and promotes movement of the SHORT-ROOT transcription factor. Curr Biol 21:1559–1564CrossRefPubMedGoogle Scholar
  13. Kumimoto RW, Zhang Y, Siefers N, Holt BF (2010) NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod-dependent flowering in Arabidopsis thaliana. Plant J 63:379–391CrossRefPubMedGoogle Scholar
  14. Kurihara D, Matsunaga S, Kawabe A, Fujimoto S, Noda M, Uchiyama S, Fukui K (2006) Aurora kinase is required for chromosome segregation in tobacco BY-2 cells. Plant J 48:572–580CrossRefPubMedGoogle Scholar
  15. Kurihara D, Kawabe A, Matsunaga S, Nakagawa K, Fujimoto S, Uchiyama S, Fukui K (2007) Characterization of a splicing variant of plant Aurora kinase. Plant Cell Physiol 48:369–374CrossRefPubMedGoogle Scholar
  16. Kurihara D, Matsunaga S, Uchiyama S, Fukui K (2008) Live cell imaging reveals plant Aurora kinase has dual roles during mitosis. Plant Cell Physiol 49:1256–1261CrossRefPubMedGoogle Scholar
  17. Martinelli F, Reagan RL, Uratsu SL, Phu ML, Albrecht U, Zhao W, Davis CE, Bowman KD, Dandekar AM (2013) Gene regulatory networks elucidating huanglongbing disease mechanisms. PLoS One 8:e74256CrossRefPubMedPubMedCentralGoogle Scholar
  18. Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyooka K, Matsuoka K, Jinbo T, Kimura T (2007) Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104:34–41CrossRefPubMedGoogle Scholar
  19. Nemoto K, Seto T, Takahashi H, Nozawa A, Seki M, Shinozaki K, Endo Y, Sawasaki T (2011) Autophosphorylation profiling of Arabidopsis protein kinases using the cell-free system. Phytochem 72:1136–1144CrossRefGoogle Scholar
  20. Nemoto K, Takemori N, Seki M, Shinozaki K, Sawasaki T (2015) Members of the plant CRK-superfamily are capable of trans-/auto-phosphorylation of tyrosine residues. J Biol Chem 290:16665–16677CrossRefPubMedPubMedCentralGoogle Scholar
  21. Nozawa A, Matsubara Y, Tanaka Y, Takahashi H, Akagi T, Seki M, Shinozaki K, Endo Y, Sawasaki T (2009) Construction of a protein library of Arabidopsis transcription factors using wheat cell-free protein production system and its application for DNA binding analysis. Biosci Biotechnol Biochem 73:1661–1664CrossRefPubMedGoogle Scholar
  22. Papuga J, Hoffmann C, Dieterle M, Moes D, Moreau F, Tholl S, Steinmetz A, Thomas C (2010) Arabidopsis LIM proteins: a family of actin bundlers with distinct expression patterns and modes of regulation. Plant Cell 22:3034–3052CrossRefPubMedPubMedCentralGoogle Scholar
  23. Petrovska B, Cenklova V, Pochylova Z, Kourova H, Doskocilova A, Plihal O, Binarova L, Binarova P (2012) Plant Aurora kinases play a role in maintenance of primary meristems and control of endoreduplication. New Phytol 193:590–604CrossRefPubMedGoogle Scholar
  24. Rosa S, Ntoukakis V, Ohmido N, Pendle A, Abranches R, Shaw P (2014) Cell differentiation and development in Arabidopsis are associated with changes in histone dynamics at the single-cell level. Plant Cell 26:4821–4833CrossRefPubMedPubMedCentralGoogle Scholar
  25. Sawasaki T, Ogasawara T, Morishita R, Endo Y (2002) A cell-free protein synthesis system for high-throughput proteomics. Proc Natl Acad Sci USA 99:14652–14657CrossRefPubMedPubMedCentralGoogle Scholar
  26. Sawasaki T, Morishita R, Gouda MD, Endo Y (2007) Methods for high-throughput materialization of genetic information based on wheat germ cell-free expression system. Methods Mol Biol 375:95–106PubMedGoogle Scholar
  27. Schlereth A, Moller B, Liu W, Kientz M, Flipse J, Rademacher EH, Schmid M, Juergens G, Weijers D (2010) MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464:913–916CrossRefPubMedGoogle Scholar
  28. Shen H, Cao K, Wang X (2007) A conserved proline residue in the leucine zipper region of AtbZIP34 and AtbZIP61 in Arabidopsis thaliana interferes with the formation of homodimer. Biochem Biophys Res Commun 362:425–430CrossRefPubMedGoogle Scholar
  29. Takai K, Sawasaki T, Endo Y (2010) Practical cell-free protein synthesis system using purified wheat embryos. Nat Protoc 5:227–238CrossRefPubMedGoogle Scholar
  30. Tomastikova E, Demidov D, Jerabkova H, Binarova P, Houben A, Dolezel J, Petrovska B (2015) TPX2 protein of arabidopsis activates aurora kinase 1, but not aurora kinase 3 in vitro. Plant Mol Biol Reporter 33:1988–1995CrossRefGoogle Scholar
  31. Truernit E, Haseloff J (2007) A role for KNAT class II genes in root development. Plant Sig Behav 2:10–12CrossRefGoogle Scholar
  32. Van Damme D, Bouget FY, van Poucke K, Inze D, Geelen D (2004) Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFP-tagged proteins. Plant J 40:386–398CrossRefPubMedGoogle Scholar
  33. Van Damme D, De Rybel B, Gudesblat G, Demidov D, Grunewald W, De Smet I, Houben A, Beeckman T, Russinova E (2011) Arabidopsis alpha Aurora kinases function in formative cell division plane orientation. Plant Cell 23:4013–4024CrossRefPubMedPubMedCentralGoogle Scholar
  34. Weimer AK, Demidov D, Lermontova I, Beeckman T, Van Damme D (2016) Aurora kinases throughout plant developoment. Trends Plant Sci 21:69–79CrossRefPubMedGoogle Scholar
  35. Zheng FM, Yue CF, Li GH, He B, Cheng W, Wang X, Yan M, Long ZJ, Qiu WS, Yuan ZY, Xu J, Liu B, Shi Q, Lam EWF, Hung MC, Liu QT (2016) Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype. Nat Commun 7:10180CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2016

Authors and Affiliations

  • Mai Takagi
    • 1
  • Takuya Sakamoto
    • 1
  • Ritsuko Suzuki
    • 1
  • Keiichirou Nemoto
    • 2
  • Takeshi Obayashi
    • 3
  • Takeshi Hirakawa
    • 1
  • Tomoko M. Matsunaga
    • 4
  • Daisuke Kurihara
    • 5
  • Yuko Nariai
    • 6
  • Takeshi Urano
    • 6
  • Tatsuya Sawasaki
    • 2
  • Sachihiro Matsunaga
    • 1
  1. 1.Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of ScienceNodaJapan
  2. 2.Proteo-Science CenterEhime UniversityMatsuyamaJapan
  3. 3.Graduate School of Information SciencesTohoku UniversitySendaiJapan
  4. 4.Institute for Science and TechnologyTokyo University of ScienceNodaJapan
  5. 5.Division of Biological Science, Graduate School of ScienceNagoya University, JST ERATO Higashiyama Live-Holonics ProjectNagoyaJapan
  6. 6.Department of Biochemistry, Faculty of MedicineShimane UniversityIzumoJapan

Personalised recommendations