Journal of Plant Research

, Volume 129, Issue 6, pp 1141–1150 | Cite as

Impacts of simulated drought stress and artificial damage on concentrations of flavonoids in Jatropha curcas (L.), a biofuel shrub

  • Ang Dawa Lama
  • Jorma Kim
  • Olli Martiskainen
  • Tero Klemola
  • Juha-Pekka Salminen
  • Esa Tyystjärvi
  • Pekka Niemelä
  • Timo Vuorisalo
Regular Paper


We studied the possible roles of flavonoids in the antioxidant and antiherbivore chemistry in Jatropha curcas (L.), a Latin American shrub that holds great potential as a source of biofuel. Changes in flavonoid concentrations in the leaves of J. curcas seedlings exposed to artificial damage and to different rainfall patterns were assessed by applying a 32-factorial experiment in a greenhouse. The concentrations of different flavonoids in the leaves of seedlings were significantly affected by interaction effects of artificial damage, drought stress and age of the seedling. The highest flavonoid concentrations were obtained in seedlings imposed to the highest percentage of artificial damage (50 %) and grown under extreme drought stress (200 mm year−1). In this treatment combination, flavonoid concentrations were three-fold as compared to seedlings exposed to the same level of artificial damage but grown in 1900 mm year−1 rainfall application. Without artificial damage, the concentration of flavonoids in the seedlings grown in 200 mm year−1 rainfall application was still two-fold compared to seedlings grown in higher (>800 mm year−1) rainfall applications. Thus, the observed flavonoid concentration patterns in the leaves of J. curcas seedlings were primarily triggered by drought stress and light rather than by artificial damage, suggesting that drought causes oxidative stress in J. curcas.


Antioxidant enzymes Artificial damage Drought stress Flavonoids Photo-inhibition 



Authors wish to thank the staff of the Ruissalo Botanical Garden for their cooperation and help with experiments, and Turku University Foundation for its financial support. ET was financially supported by the Academy of Finland.


  1. Abd-Alla HI, Moharram FA, Gaara AH, El-Safty MM (2009) Phytoconstituents of Jatropha curcas L. leaves and their immunomodulatory activity on humoral and cell-mediated immune response in chicks. Z Naturforsch C 64:495–501. doi: 10.1515/znc-2009-7-805 CrossRefPubMedGoogle Scholar
  2. Achten WMJ, Trabucco A, Maes WH, Verchot LV, Aerts R, Mathijs E, Vantomme P, Singh VP, Muys B (2013) Global greenhouse gas implications of land conversion to biofuel crop cultivation in arid and semi-arid lands—lessons learned from Jatropha. J Arid Environ 98:135–145. doi: 10.1016/j.jaridenv.2012.06.015 CrossRefGoogle Scholar
  3. Agati G, Tattini M (2010) Multiple functional roles of flavonoids in photo protection. New Phytol 186:786–793. doi: 10.1111/j.1469-8137.2010.03269.x CrossRefPubMedGoogle Scholar
  4. Agati G, Cerovic ZG, Pinelli P, Tattini M (2011) Light-induced accumulation of ortho-dihydroxylated flavonoids as non-destructively monitored by chlorophyll fluorescence excitation techniques. Environ Exp Bot 73:3–9. doi: 10.1016/j.envexpbot.2010.10.002 CrossRefGoogle Scholar
  5. Agati G, Brunetti C, Di Ferdinando M, Ferrini F, Pollastri S, Tattini M (2013) Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiol Biochem 72:35–45. doi: 10.1016/j.plaphy.2013.03.014 CrossRefPubMedGoogle Scholar
  6. Agrawal AA (2011) Current trends in the evolutionary ecology of plant defence. Funct Ecol 25:420–432. doi: 10.1111/j.1365-2435.2010.01796.x CrossRefGoogle Scholar
  7. Alvero-Bascos EM, Ungson LB (2012) Ultraviolet-B (UV-B) radiation as an elicitor of flavonoid production in callus cultures of Jatropha (Jatropha curcas L.). Philipp Agric Sci 95:335–343Google Scholar
  8. Azam MM, Waris A, Nahar NM (2005) Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenerg 29:293–302. doi: 10.1016/j.biombioe.2005.05.001 CrossRefGoogle Scholar
  9. Bandau F, Decker VHG, Gundale MJ, Albrectsen BR (2015) Genotypic tannin levels in Populus tremulaimpact the way nitrogen enrichment affects growth and allocation responses for some traits and not for others. Plus One. doi: 10.1371/journal.pone.0140971 Google Scholar
  10. Bryant JP, Chapin FS, Klein DR (1983) Carbon nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368CrossRefGoogle Scholar
  11. Close DC, McArthur C (2002) Rethinking the role of many plant phenolics—protection from photo damage not herbivores? Oikos 99:166–172. doi: 10.1034/j.1600-0706.2002.990117.x CrossRefGoogle Scholar
  12. Coley P, Bryant J, Chapin F III (1985) Resource availability and plant antiherbivore defense. Sciences 230:895–899CrossRefGoogle Scholar
  13. Crozier A, Jaganath IB, Clifford MN (2006) Phenols, polyphenols and tannins: an overview. In: Crozier A, Clifford MN, Ashihara H (eds) Plant secondary metabolites: occurrence, structure and role in the human diet. Blackwell Publishing Ltd., Oxford, p 1–24. doi:10.1002/9780470988558.ch1Google Scholar
  14. Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165CrossRefPubMedPubMedCentralGoogle Scholar
  15. Engström MT, Pälijärvi M, Fryganas F, Grabber J, Mueller-Harvey I, Salminen J-P (2014) Rapid qualitative and quantitative analysis of proanthocyanidin oligomers and polymers by UPLC-MS/MS. J Agric Food Chem 62:3390–3399CrossRefPubMedGoogle Scholar
  16. Engström MT, Pälijärvi M, Salminen J-P (2015) Rapid fingerprint analysis of plant extracts for ellagitannins, gallic acid and quinic acid derivatives, and quercetin-, kaempferol- and myricetin-based flavonol glycosides by UPLC-QqQ-MS/MS. J Agric Food Chem 63:4068–4079CrossRefPubMedGoogle Scholar
  17. Fairless D (2007) Biofuel: the little shrub that could—maybe. Nature 449:652–655. doi: 10.1038/449652a CrossRefPubMedGoogle Scholar
  18. Feeny P (1976) Plant apparency and chemical defense. Recent Adv Phytochem 10:1–40Google Scholar
  19. Ferdinando M, Brunetti C, Fini A, Tattini M (2012) Flavonoids as antioxidants in plants under abiotic stresses. In: Ahmad P, Prasad MNV (eds) Abiotic stress responsesin plants-metabolism, productivity and sustainability. Springer, New York Dordrecht Heidelberg London, pp 159–179CrossRefGoogle Scholar
  20. Fini A, Bellasio C, Pollastri S, Tattini M, Ferrini F (2013) Water relations, growth, and leaf gas exchange as affected by water stress in Jatropha curcas. J Arid Environ 89:21–29. doi: 10.1016/j.jaridenv.2012.10.009 CrossRefGoogle Scholar
  21. Gadd ME, Young TP, Palmer TM (2001) Effects of simulated shoot and leaf herbivory on vegetative growth and plant defense in Acacia drepanolobium. Oikos 92:515–521CrossRefGoogle Scholar
  22. Galeotti F, Barile E, Curir P, Dolci M, Lanzotti V (2008) Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochem Lett 1:44–48. doi: 10.1016/j.phytol.2007.10.001 CrossRefGoogle Scholar
  23. Grace and Logan (2000) Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Phil Trans R Soc Lond B 355:1499–1510. doi: 10.1098/rstb.2000.0710 CrossRefGoogle Scholar
  24. Hakala-Yatkin M, Mäntysaari M, Mattila H, Tyystjärvi E (2010) Contributions of visible and ultraviolet parts of sunlight to photo inhibition. Plant Cell Physiol 51:1745–1753. doi: 10.1093/pcp/pcq133 CrossRefPubMedGoogle Scholar
  25. Hay KB, Poore AGB, Lovelock CE (2011) The effects of nutrient availability on tolerance to herbivory in a brown seaweed. J Ecol 99:1540–1550. doi: 10.1111/j.1365-2745.2011.01874.x CrossRefGoogle Scholar
  26. Heller J (1996) Physic Nut. Jatropha curcas L. promoting the conservation and use of underutilized and neglected crops. Institute of Plant Genetics and Crop Plant Research and International Plant Genetic Resources Institute, RomeGoogle Scholar
  27. Henández and Breusegem (2010) Opinion on the possible role of flavonoids as energy escape valves: novel tools for nature’s Swiss army knife? Plant Sci 179:297–301. doi: 10.1016/j.plantsci.2010.06.001 CrossRefGoogle Scholar
  28. Herms DA, Mattson WJ (1992) The dilemma of plant: to grow or defend. Q Rev Biol 67:283–335. doi: 10.1086/417659 CrossRefGoogle Scholar
  29. Hernandez I, Alegre L, Munne-Bosch S (2011) Plant aging and excess light enhance flavan-3-ol content in Cistus clusii. J Plant Physiol 168:96–102. doi: 10.1016/j.jplph.2010.06.026 CrossRefPubMedGoogle Scholar
  30. Huang Q, Guo Y, Fu R, Peng T, Zhang Y, Chen F (2014) Antioxidant activity of flavonoids from leaves of Jatropha curcas. Sci Asia 40:193–197. doi: 10.2306/scienceasia1513-1874.2014.40.193 CrossRefGoogle Scholar
  31. Jaakola L, Maatta-Riihinen K, Karenlampi S, Hohtola A (2004) Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. Planta 218:721–728CrossRefPubMedGoogle Scholar
  32. Kenward MG, Roger JH (1997) Small sample interference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997. doi: 10.2307/2533558 CrossRefPubMedGoogle Scholar
  33. Khan MAM, Ulrichs C, Mewis I (2011a) Effect of water stress and aphid herbivory on flavonoids in broccoli (Brassica oleracea var. italica Plenck). J Appl Bot Food Qual 84:178–182Google Scholar
  34. Khan MAM, Ulrichs C, Mewis I (2011b) Water stress alters aphid-induced glucosinolate response in Brassica oleracea var. italica differently. Chemoecology 21:235–242. doi: 10.1007/s00049-011-0084.4 CrossRefGoogle Scholar
  35. Khan AL, Hamayun M, Waqas M, Kang SM, Kim YH, Kim DH, Lee IJ (2012) Exophiala sp. LHL08 association gives heat stress tolerance by avoiding oxidative damage to cucumber plants. Biol Fertil Soils 48:519–529. doi: 10.1007/s00374-011-0649-y CrossRefGoogle Scholar
  36. Kim YS, Hwang JW, Kim SE, Kim EH, Jeon YJ, Moon SH, Jeon BT, Park PJ (2012) Antioxidant activity and protective effects of Uncaria rhynchophylla extracts on t-BHP-induced oxidative stress in Chang cells. Biotechnol Bioprocess Eng 17:1213–1222. doi: 10.1007/s12257-012-0278-9 CrossRefGoogle Scholar
  37. Kumar RV, Ahlawat SP, Pandey SK, Ranjan R, Joshi DC (2012) Assessment of genetic variability in growth, reproductive phenology, seed characters and yield in Jatropha curcas (L.) genetic resources. Range Manag Agrofor 33:53–56Google Scholar
  38. Lama AD, Vuorisalo T, Niemela P (2015) Global patterns of arthropod herbivory on an invasive plant, the physic nut (Jatropha curcas L.). J Appl Entomol 139:1–10. doi: 10.1111/jen.12161 CrossRefGoogle Scholar
  39. Lieurance D, Cipollini D (2013) Environmental influences on growth and defence responses of the invasive shrub, Lonicera maackii, to simulated and real herbivory in the juvenile stage. Ann Bot 112:741–749. doi: 10.1093/aob/mct070 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Loomis WE (1981) Growth and differentiation-an introduction and summary. In: Wareing PF, Phillips IDJ (eds) Growth and differentiation in plants. Pergamon Press, New York, pp 1–17Google Scholar
  41. Lyytikäinen P (1994) Effects of natural and artificial defoliations on sawfly performance and foliar chemistry of Scots pine saplings. Ann Zool Fenn 31:307–318Google Scholar
  42. Lyytikäinen-Saarenmaa P (1999) Growth responses of Scots pine (Pinaceae) to artificial and sawfly (Hymenoptera: Diprionidae) defoliation. Can Entomol 131:455–463CrossRefGoogle Scholar
  43. Maes WH, Trabucco A, Achten WMJ, Muys B (2009a) Climatic growing conditions of Jatropha curcas L. Biomass Bioenerg 33:1481–1485. doi: 10.1016/j.biombioe.2009.06.001 CrossRefGoogle Scholar
  44. Maes WH, Achten WMJ, Reubens B, Raes D, Samson R, Muys B (2009b) Plant-water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress. J Arid Environ 73:877–884. doi: 10.1016/j.jaridenv.2009.04.013 CrossRefGoogle Scholar
  45. Marahatta S, Dangol BS, Gurung GB (2009) Temporal and spatial variability of climate change over Nepal (1976–2005). Practical Action Nepal, Kathmandu, NepalGoogle Scholar
  46. Massad TJ, Dyer LA, Vega GC (2012) Costs of defense and a test of the carbon–nutrient balance and growth-differentiation balance hypotheses for two co-occurring classes of plant defense. PLoS One 7:e47554–e47562. doi: 10.1371/journal.pone.0047554 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Miean KH, Mohamed S (2001) Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem 49:3106–3112CrossRefPubMedGoogle Scholar
  48. Moilanen J, Sinkkonen J, Salminen J-P (2013) Characterization of bioactive plant ellagitannins by chromatographic, spectroscopic and mass spectrometric methods. Chemoecology 23:165–179CrossRefGoogle Scholar
  49. Openshaw K (2000) A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenerg 19:1–15. doi: 10.1016/S0961-9534(00)00019-2 CrossRefGoogle Scholar
  50. Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids-biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14:14950–14973. doi: 10.3390/ijms140714950 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Prasad DMR, Izam A, Khan MdMR (2012) Jatropha curcas: plant of medicinal benefits. J Med Plants Res 6:2691–2699. doi: 10.5897/JMPR10.977 Google Scholar
  52. Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant signal Behav 6:1720–1731. doi: 10.4161/psb.6.11.17613 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rhoades DF, Cates RG (1976) Toward a general theory of plant antiherbivory chemistry. Recent Adv Phytochem 10:168–213Google Scholar
  54. Samanta A, Das G, Kumar S (2011) Roles of flavonoids in plants. Int J Pharm Sci Technol 6:12–35Google Scholar
  55. Scheidel U, Bruelheide H (2004) The impacts of altitude and simulated herbivory on the growth and carbohydrate storage of Petasites albus. Plant Biol 6:740–745. doi: 10.1055/s-2004-830352 CrossRefPubMedGoogle Scholar
  56. Selmar D (2008) Potential of salt and drought stress to increase pharmaceutical significant secondary compounds in plants. LandbauforschVoelk 58:139–144Google Scholar
  57. Solovchenko AE, Merzlyak MN (2008) Screening of visible and UV radiation as a photoprotective mechanism in plants. Rus J Plant Physiol 55:719–737. doi: 10.1134/S1021443708060010 CrossRefGoogle Scholar
  58. Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55CrossRefPubMedGoogle Scholar
  59. Wani SP, Chander G, Sahrawat KL, Rao CS, Raghvendra G, Susanna P, Pavani M (2012) Carbon sequestration and land rehabilitation through Jatropha curcas (L.) plantation in degraded lands. Agric Ecosyst Environ 161:112–120. doi: 10.1016/j.agee.2012.07.028 CrossRefGoogle Scholar
  60. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2016

Authors and Affiliations

  • Ang Dawa Lama
    • 1
  • Jorma Kim
    • 2
  • Olli Martiskainen
    • 2
  • Tero Klemola
    • 3
  • Juha-Pekka Salminen
    • 2
  • Esa Tyystjärvi
    • 4
  • Pekka Niemelä
    • 1
  • Timo Vuorisalo
    • 1
  1. 1.Section of Biodiversity and Environmental Sciences, Department of BiologyUniversity of TurkuTurkuFinland
  2. 2.Laboratory of Organic Chemistry and Chemical Biology, Department of ChemistryUniversity of TurkuTurkuFinland
  3. 3.Section of Ecology, Department of BiologyUniversity of TurkuTurkuFinland
  4. 4.Department of Biochemistry/Molecular Plant BiologyUniversity of TurkuTurkuFinland

Personalised recommendations