Journal of Plant Research

, Volume 129, Issue 5, pp 909–919 | Cite as

Expression of the CLE-RS3 gene suppresses root nodulation in Lotus japonicus

Regular Paper

Abstract

Cell-to-cell communication, principally mediated by short- or long-range mobile signals, is involved in many plant developmental processes. In root nodule symbiosis, a mutual relationship between leguminous plants and nitrogen-fixing rhizobia, the mechanism for the autoregulation of nodulation (AON) plays a key role in preventing the production of an excess number of nodules. AON is based on long-distance cell-to-cell communication between roots and shoots. In Lotus japonicus, two CLAVATA3/ESR-related (CLE) peptides, encoded by CLE-ROOT SIGNAL 1 (CLE-RS1) and -RS2, act as putative root-derived signals that transmit signals inhibiting further nodule development through interaction with a shoot-acting receptor-like kinase HYPERNODULATION ABERRANT ROOT FORMATION 1 (HAR1). Here, an in silico search and subsequent expression analyses enabled us to identify two new L. japonicusCLE genes that are potentially involved in nodulation, designated as CLE-RS3 and LjCLE40. Time-course expression patterns showed that CLE-RS1/2/3 and LjCLE40 expression is induced during nodulation with different activation patterns. Furthermore, constitutive expression of CLE-RS3 significantly suppressed nodule formation in a HAR1-dependent manner. TOO MUCH LOVE, a root-acting regulator of AON, is also required for the CLE-RS3 action. These results suggest that CLE-RS3 is a new component of AON in L. japonicus that may act as a potential root-derived signal through interaction with HAR1. Because CLE-RS2, CLE-RS3 and LjCLE40 are located in tandem in the genome and their expression is induced not only by rhizobial infection but also by nitrate, these genes may have duplicated from a common gene.

Keywords

Autoregulation of nodulation CLE Legume Lotus japonicus Nodulation Root nodule symbiosis 

Supplementary material

10265_2016_842_MOESM1_ESM.pdf (148 kb)
Supplementary tables (PDF 148 kb)
10265_2016_842_MOESM2_ESM.tif (148 kb)
Fig. S1 Schematic structure of the genomic region harboring CLE-RS2, CLE-RS3 and LjCLE40 (TIFF 148 kb)
10265_2016_842_MOESM3_ESM.tif (211 kb)
Fig. S2 Real-time RT-PCR analysis of CLE-RS3 (a), LjCLE40 (b), CLE-RS1 (c), CLE-RS2 (d), LjCLE39 (e), LjCLE41 (f) and LjCLE42 (g) expression in wild-type. Each cDNA sample was prepared from total RNA derived from the flower, leaf, stem, shoot apex, non-inoculated (-) and 1 dai (+) roots. The expression patterns of CLE-RS1 and CLE-RS2 in the organs other than inoculated roots are shown as inset (c, d). LjUBQ was used to assess the relative expression of each gene. Error bars indicate SE (n = 3 independent pools of respective organs) (TIFF 210 kb)
10265_2016_842_MOESM4_ESM.tif (172 kb)
Fig. S3 Real-time RT-PCR analysis of LjCLE39 (a), LjCLE41 (b) and LjCLE42 (c) expression in wild-type non-inoculated roots (0) and 1, 3, 5, 7 and 14 dai. Each cDNA was prepared from total RNA derived from the entire root. LjUBQ was used to assess the relative expression of each gene. Error bars indicate SE (n = 3–4 independent pools of roots) (TIFF 172 kb)
10265_2016_842_MOESM5_ESM.tif (80 kb)
Fig. S4 Real-time RT-PCR analysis of CLE-RS3 expression in stably transformed L. japonicus transgenic plants that were constitutively expressing CLE-RS3 or GUS. Each cDNA was prepared from total RNA derived from the entire root. LjUBQ was used to assess the relative expression of each gene. Error bars indicate SE (n = 3 independent pools of roots) (TIFF 80 kb)

References

  1. Araya T, Miyamoto M, Wibowo J, Suzuki A, Kojima S, Tsuchiya YN, Sawa S, Fukuda H, von Wirén N, Takahashi H (2014) CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner. Proc Natl Acad Sci USA 111:2029–2034CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bidadi H, Matsuoka K, Sage-Ono K, Fukushima J, Pitaksaringkarn W, Asahina M, Yamaguchi S, Sawa S, Fukuda H, Matsubayashi Y, Ono M, Satoh S (2014) CLE6 expression recovers gibberellin deficiency to promote shoot growth in Arabidopsis. Plant J 78:241–252CrossRefPubMedGoogle Scholar
  3. Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617–619CrossRefPubMedGoogle Scholar
  4. Caetano-Anolles G, Gresshoff PM (1991) Plant genetic control of nodulation. Annu Rev Microbiol 45:345–382CrossRefPubMedGoogle Scholar
  5. Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585CrossRefPubMedGoogle Scholar
  6. Cock JM, McCormick S (2001) A large family of genes that share homology with CLAVATA3. Plant Physiol 126:939–942CrossRefPubMedPubMedCentralGoogle Scholar
  7. Daum G, Medzihradszky A, Suzaki T, Lohmann JU (2014) A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. Proc Natl Acad Sci USA 111:14619–14624CrossRefPubMedPubMedCentralGoogle Scholar
  8. Djordjevic MA, Mohd-Radzman NA, Imin N (2015) Small-peptide signals that control root nodule number, development, and symbiosis. J Exp Bot 66:5171–5181CrossRefPubMedGoogle Scholar
  9. Endo S, Betsuyaku S, Fukuda H (2014) Endogenous peptide ligand-receptor systems for diverse signaling networks in plants. Curr Opin Plant Biol 21:140–146CrossRefPubMedGoogle Scholar
  10. Fisher K, Turner S (2007) PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol 17:1061–1066CrossRefPubMedGoogle Scholar
  11. Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–1914CrossRefPubMedGoogle Scholar
  12. Haecker A, Groß-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657–668CrossRefPubMedGoogle Scholar
  13. Handa Y, Nishide H, Takeda N, Suzuki Y, Kawaguchi M, Saito K (2015) RNA-seq transcriptional profiling of an arbuscular mycorrhiza provides insights into regulated and coordinated gene expression in Lotus japonicus and Rhizophagus irregularis. Plant Cell Physiol 56:1490–1511CrossRefPubMedGoogle Scholar
  14. Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H (2008) Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci USA 105:15208–15213CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hirakawa Y, Kondo Y, Fukuda H (2010) TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell 22:2618–2629CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–845CrossRefPubMedGoogle Scholar
  17. Karimi M, Inzé D, Depicker A (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195CrossRefPubMedGoogle Scholar
  18. Kawaguchi M (2000) Lotus japonicus ‘Miyakojima’ MG-20: an early-flowering accession suitable for indoor handling. J Plant Res 113:507–509CrossRefGoogle Scholar
  19. Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F, Pajuelo E, Sandal N, Stougaard J (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420:422–426CrossRefPubMedGoogle Scholar
  20. Magori S, Oka-Kira E, Shibata S, Umehara Y, Kouchi H, Hase Y, Tanaka A, Sato S, Tabata S, Kawaguchi M (2009) TOO MUCH LOVE, a root regulator associated with the long-distance control of nodulation in Lotus japonicus. Mol Plant Microbe Interact 22:259–268CrossRefPubMedGoogle Scholar
  21. Mayer KFX, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815CrossRefPubMedGoogle Scholar
  22. Miyawaki K, Tabata R, Sawa S (2013) Evolutionarily conserved CLE peptide signaling in plant development, symbiosis, and parasitism. Curr Opin Plant Biol 16:598–606CrossRefPubMedGoogle Scholar
  23. Miyazawa H, Oka-Kira E, Sato N, Takahashi H, Wu GJ, Sato S, Hayashi M, Betsuyaku S, Nakazono M, Tabata S, Harada K, Sawa S, Fukuda H, Kawaguchi M (2010) The receptor-like kinase KLAVIER mediates systemic regulation of nodulation and non-symbiotic shoot development in Lotus japonicus. Development 137:4317–4325CrossRefPubMedGoogle Scholar
  24. Mortier V, Den Herder G, Whitford R, Van de Velde W, Rombauts S, D’Haeseleer K, Holsters M, Goormachtig S (2010) CLE peptides control Medicago truncatula nodulation locally and systemically. Plant Physiol 153:222–237CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mortier V, De Wever E, Vuylsteke M, Holsters M, Goormachtig S (2012) Nodule numbers are governed by interaction between CLE peptides and cytokinin signaling. Plant J 70:367–376CrossRefPubMedGoogle Scholar
  26. Nishimura R, Hayashi M, Wu GJ, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Harada K, Kawaguchi M (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420:426–429CrossRefPubMedGoogle Scholar
  27. Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y (2008) Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319:294CrossRefPubMedGoogle Scholar
  28. Oka-Kira E, Kawaguchi M (2006) Long-distance signaling to control root nodule number. Curr Opin Plant Biol 9:496–502CrossRefPubMedGoogle Scholar
  29. Oka-Kira E, Tateno K, K-i Miura, Haga T, Hayashi M, Harada K, Sato S, Tabata S, Shikazono N, Tanaka A, Watanabe Y, Fukuhara I, Nagata T, Kawaguchi M (2005) klavier (klv), a novel hypernodulation mutant of Lotus japonicus affected in vascular tissue organization and floral induction. Plant J 44:505–515CrossRefPubMedGoogle Scholar
  30. Okamoto S, Ohnishi E, Sato S, Takahashi H, Nakazono M, Tabata S, Kawaguchi M (2009) Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation. Plant Cell Physiol 50:67–77CrossRefPubMedGoogle Scholar
  31. Okamoto S, Shinohara H, Mori T, Matsubayashi Y, Kawaguchi M (2013) Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase. Nat Commun 4:2191CrossRefPubMedGoogle Scholar
  32. Okamoto S, Suzuki T, Kawaguchi M, Higashiyama T, Matsubayashi Y (2015) A comprehensive strategy for identifying long-distance mobile peptides in xylem sap. Plant J 84:611–620CrossRefPubMedGoogle Scholar
  33. Reid DE, Ferguson BJ, Gresshoff PM (2011) Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation. Mol Plant Microbe Interact 24:606–618CrossRefPubMedGoogle Scholar
  34. Reid DE, Li D, Ferguson BJ, Gresshoff PM (2013) Structure–function analysis of the GmRIC1 signal peptide and CLE domain required for nodulation control in soybean. J Exp Bot 64:1575–1585CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sasaki T, Suzaki T, Soyano T, Kojima M, Sakakibara H, Kawaguchi M (2014) Shoot-derived cytokinins systemically regulate root nodulation. Nat Commun 5:4983CrossRefPubMedGoogle Scholar
  36. Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239CrossRefPubMedPubMedCentralGoogle Scholar
  37. Schauser L, Roussis A, Stiller J, Stougaard J (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402:191–195CrossRefPubMedGoogle Scholar
  38. Schoof H, Lenhard M, Haecker A, Mayer KFX, Jürgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644CrossRefPubMedGoogle Scholar
  39. Searle IR, Men AE, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Carroll BJ, Gresshoff PM (2003) Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299:109–112CrossRefPubMedGoogle Scholar
  40. Soyano T, Hirakawa H, Sato S, Hayashi M, Kawaguchi M (2014) NODULE INCEPTION creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production. Proc Natl Acad Sci USA 111:14607–14612CrossRefPubMedPubMedCentralGoogle Scholar
  41. Stahl Y, Wink RH, Ingram GC, Simon R (2009) A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr Biol 19:909–914CrossRefPubMedGoogle Scholar
  42. Stahl Y, Grabowski S, Bleckmann A, Kühnemuth R, Weidtkamp-Peters S, Pinto KG, Kirschner Gwendolyn K, Schmid JB, Wink RH, Hülsewede A, Felekyan S, Seidel CAM, Simon R (2013) Moderation of Arabidopsis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes. Curr Biol 23:362–371CrossRefPubMedGoogle Scholar
  43. Suzaki T, Toriba T, Fujimoto M, Tsutsumi N, Kitano H, Hirano H-Y (2006) Conservation and diversification of meristem maintenance mechanism in Oryza sativa: function of the FLORAL ORGAN NUMBER2 gene. Plant Cell Physiol 47:1591–1602CrossRefPubMedGoogle Scholar
  44. Suzaki T, Yano K, Ito M, Umehara Y, Suganuma N, Kawaguchi M (2012) Positive and negative regulation of cortical cell division during root nodule development in Lotus japonicus is accompanied by auxin response. Development 139:3997–4006CrossRefPubMedGoogle Scholar
  45. Suzaki T, Kim CS, Takeda N, Szczyglowski K, Kawaguchi M (2013) TRICOT encodes an AMP1-related carboxypeptidase that regulates root nodule development and shoot apical meristem maintenance in Lotus japonicus. Development 140:353–361CrossRefPubMedGoogle Scholar
  46. Suzaki T, Ito M, Yoro E, Sato S, Hirakawa H, Takeda N, Kawaguchi M (2014) Endoreduplication-mediated initiation of symbiotic organ development in Lotus japonicus. Development 141:2441–2445CrossRefPubMedGoogle Scholar
  47. Suzaki T, Yoro E, Kawaguchi M (2015) Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. Int Rev Cell Mol Biol 316:111–158CrossRefPubMedGoogle Scholar
  48. Suzuki A, Hara H, Kinoue T, Abe M, Uchiumi T, K-i Kucho, Higashi S, Hirsch AM, Arima S (2008) Split-root study of autoregulation of nodulation in the model legume Lotus japonicus. J Plant Res 121:245–249CrossRefPubMedGoogle Scholar
  49. Tabata R, Sumida K, Yoshii T, Ohyama K, Shinohara H, Matsubayashi Y (2014) Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science 346:343–346CrossRefPubMedGoogle Scholar
  50. Takahara M, Magori S, Soyano T, Okamoto S, Yoshida C, Yano K, Sato S, Tabata S, Yamaguchi K, Shigenobu S, Takeda N, Suzaki T, Kawaguchi M (2013) TOO MUCH LOVE, a novel Kelch repeat-containing F-box protein, functions in the long-distance regulation of the legume-Rhizobium symbiosis. Plant Cell Physiol 54:433–447CrossRefPubMedGoogle Scholar
  51. Wang Y, Wang L, Zou Y, Chen L, Cai Z, Zhang S, Zhao F, Tian Y, Jiang Q, Ferguson BJ, Gresshoff PM, Li X (2014) Soybean miR172c targets the repressive AP2 transcription factor NNC1 to activate ENOD40 expression and regulate nodule initiation. Plant Cell 26:4782–4801CrossRefPubMedPubMedCentralGoogle Scholar
  52. Wopereis J, Pajuelo E, Dazzo FB, Jiang Q, Gresshoff PM, De Bruijn FJ, Stougaard J, Szczyglowski K (2000) Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant J 23:97–114CrossRefPubMedGoogle Scholar
  53. Yadav RK, Perales M, Gruel J, Girke T, Jönsson H, Reddy GV (2011) WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev 25:2025–2030CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2016

Authors and Affiliations

  1. 1.National Institute for Basic BiologyOkazakiJapan
  2. 2.School of Life ScienceThe Graduate University for Advanced StudiesOkazakiJapan
  3. 3.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations