Journal of Plant Research

, Volume 129, Issue 3, pp 513–526 | Cite as

The grapevine VviPrx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature

  • Nooshin Movahed
  • Chiara Pastore
  • Antonio Cellini
  • Gianluca Allegro
  • Gabriele Valentini
  • Sara Zenoni
  • Erika Cavallini
  • Erica D’Incà
  • Giovanni Battista Tornielli
  • Ilaria Filippetti
Regular Paper


Anthocyanin levels decline in some red grape berry varieties ripened under high-temperature conditions, but the underlying mechanism is not yet clear. Here we studied the effects of two different temperature regimes, representing actual Sangiovese (Vitis vinifera L.) viticulture regions, on the accumulation of mRNAs and enzymes controlling berry skin anthocyanins. Potted uniform plants of Sangiovese were kept from veraison to harvest, in two plastic greenhouses with different temperature conditions. The low temperature (LT) conditions featured average and maximum daily air temperatures of 20 and 29 °C, respectively, whereas the corresponding high temperature (HT) conditions were 22 and 36 °C, respectively. The anthocyanin concentration at harvest was much lower in HT berries than LT berries although their profile was similar under both conditions. Under HT conditions, the biosynthesis of anthocyanins was suppressed at both the transcriptional and enzymatic levels, but peroxidase activity was higher. This suggests that the low anthocyanin content of HT berries reflects the combined impact of reduced biosynthesis and increased degradation, particularly the direct role of peroxidases in anthocyanin catabolism. Overexpression of VviPrx31 decreased anthocyanin contents in Petunia hybrida petals under heat stress condition. These data suggest that high temperature can stimulate peroxidase activity thus anthocyanin degradation in ripening grape berries.


Grape Skin color Climate change Peroxidase activity Petunia 

Supplementary material

10265_2016_786_MOESM1_ESM.pdf (231 kb)
Supplementary material 1 (PDF 231 kb)
10265_2016_786_MOESM2_ESM.pdf (106 kb)
Supplementary material 2 (PDF 105 kb)
10265_2016_786_MOESM3_ESM.pdf (958 kb)
Supplementary material 3 (PDF 958 kb)


  1. Archer E, Strauss HE (1989) Effect of shading on the performance of Vitis vinifera L. cv Cabernet Sauvignon. S Afr J Enol Vitic 10:74–77Google Scholar
  2. Barbagallo MG, Lino T, Santalucia G, Scafidi P (2007) Effetti di modificazioni del microclima dai grappoli mediante sfogliatura e copertura con rete ombreggiante sulla qualità dell’uva della cv Pinot nero in Sicilia. Italus Hortus 14:181–185Google Scholar
  3. Barceló AR, Pomar F, Lopez-Serano M, Pedreno MA (2003) Peroxidase: a multifunctional enzyme in grapevines. Funct Plant Biol 30:557–591CrossRefGoogle Scholar
  4. Beld M, Martin C, Huits H, Stuitje AR, Gerats AGM (1989) Partial characterization of dihydroflavonol-4-reductase genes. Plant Mol Bio 13:491–502CrossRefGoogle Scholar
  5. Bergqvist J, Dokoozlian N, Ebisuda N (2001) Sunlight exposure and temperature effects on berry growth and composition of Cabernet Sauvignon and Grenache in the Central San Joaquin Valley of California. Am J Enol Vitic 52:1–6Google Scholar
  6. Calderón AA, García-Florenciano E, Muñoz R, Ros Barceló A (1992) Gamay grapevine peroxidase: its role in vacuolar anthocyanin(di)n degradation. Vitis 31:139–147Google Scholar
  7. Carbonell-Bejerano P, Santa Maria E, Torrés Perez R, Royo C, Lijavetzky D, Bravo G, Aguirreolea J, Sánchez-Díaz M, Carmen Antolín M, Martinez-Zapater JM (2013) Thermotolerance responses in ripening berries of Vitis vinifera L cv Muscat Hamburg. Plant Cell Physiol 54:1200–1216CrossRefPubMedGoogle Scholar
  8. Cohen SD, Tarara JM, Gambetta GA, Matthews MA, Kennedy JA (2012) Impact of diurnal temperature variation on grape berry development, proanthocyanidin accumulation, and the expression of flavonoid pathway genes. J Exp Bot 63:2655–2665CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cutanda-Perez MC, Ageorges A, Gomez C, Vialet S, Terrier N, Romieu C, Torregosa L (2009) Ectopic expression of VlmybA1 in grapevine activates a narrow set of genes involved in anthocyanin synthesis and transport. Plant Mol Biol 69:633–648CrossRefPubMedGoogle Scholar
  10. Dal Santo S, Tornielli GB, Zenoni S, Fasoli M, Farina L, Anesi A, Guzzo F, Delledonne M, Pezzotti M (2013) The plasticity of the grapevine berry transcriptome. Genome Biol 14:R54CrossRefPubMedPubMedCentralGoogle Scholar
  11. Del Pozo-Insfran D, Del Follo-Martinez A, Talcott ST, Brenes CH (2007) Stability of copigmented anthocyanins and ascorbic acid in Muscadine grape juice processed by high hydrostatic pressure. J Food Sci 72:247–253CrossRefGoogle Scholar
  12. Deluc L, Grimplet J, Wheatley MD, Tillet RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genom 8(1):429CrossRefGoogle Scholar
  13. Downey MO, Dokoozlian NK, Krstic MP (2006) Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am J Enol Vitic 57:257–268Google Scholar
  14. Falginella L, Castellarin SD, Testolin R, Gambetta GA, Morgante M, Di Gaspero G (2010) Expansion and subfunctionalisation of flavonoid 3′,5′-hydroxylases in the grapevine lineage. BMC Genom 11:562. doi: 10.1186/1471-2164-11-562 CrossRefGoogle Scholar
  15. Fasoli M, Dal Santo S, Zenoni S, Tornielli GB, Farina L, Zamboni A (2012) The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell 24:3489–3505CrossRefPubMedPubMedCentralGoogle Scholar
  16. Filippetti I, Ramazzotti S, Centinari M, Bucchetti B, Intrieri C (2007) Esperienze triennali sugli effetti del diradamento dei grappoli sulla qualità delle uve della cultivar Sangiovese. Italus Hortus 14:412–416Google Scholar
  17. Goto-Yamamoto N, Wan GH, Masaki K, Kobayashi S (2002) Structure and transcription of three chalcone synthase genes of grapevine (Vitis vinifera). Plant Sci 162:867–872CrossRefGoogle Scholar
  18. Grimplet J, Van Hemert J, Crbonell-Bejerano P, Diiaz-Riquelme J, Dickenson J, Fennell A, Pezzotti M, Martinez-Zapater JM (2012) Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences. BMC Res Notes 5:213CrossRefPubMedPubMedCentralGoogle Scholar
  19. Grover A, Mittal D, Negi M, Lavania D (2013) Generating high temperature tolerant transgenic plants: achievements and challenges. Plant Sci 205:38–47CrossRefPubMedGoogle Scholar
  20. Guidoni S, Ferrandino A, Novello V (2008) Effects of seasonal and agronomical practices on skin anthocyanin profile of nebbiolo grapes. Am J Enol Vitic 59:22–29Google Scholar
  21. Jackman RL, Smith JL (1996) Anthocyanins and Betalains. Natural food colorants. Springer, US, pp 244–309CrossRefGoogle Scholar
  22. Jeong ST, Goto-Yamamoto N, Kobayashi S, Esaka M (2004) Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci 167:247–252CrossRefGoogle Scholar
  23. Keller M, Mills LJ, Wample RL, Spayd SE (2005) Cluster thinning effects on three deficit-irrigated Vitis vinifera L. Am J Enol Vitic 56:91–103Google Scholar
  24. Kliewer WM, Schultz HB (1964) Influence of environment on metabolism of organic acids and carbohydrates in Vitis vinifera. II. Light. Am J Enol Vitic 15:119–129Google Scholar
  25. Kliewer WM, Torres RE (1972) Effect of controlled day and night temperatures on grape coloration. Am J Enol Vitic 23:71–77Google Scholar
  26. Kochhar S, Kochhar VK, Khanduja SD (1979) Changes in the pattern of isoperoxidases during maturation of grape berries cv Gulabi as affected by ethephon (2-chloroethyl) phosphonic acid. Am J Enol Vitic 30:275–277Google Scholar
  27. Lakso AN, Kliewer WM (1978) The influence of temperature on malic acid metabolism in grape berries. II. Temperature responses of net dark CO2 fixation and malic acid pools. Am J Enol Vitic 29:145–149Google Scholar
  28. Lin-Wang K, Micheletti D, Palmer J, Volz R, Lozano L, Espley R, Allan AC (2011) High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant Cell Environ 34:1176–1190CrossRefPubMedGoogle Scholar
  29. Lorenz DH, Eichhorn KW, Bleiholder H, Klose R, Meier U, Weber E (1995) Growth stages of the grapevine: phenological growth stages of the grapevine (Vitis vinifera L. ssp.vinifera). Codes and descriptions according to the extended BBCH scale. Aust J Grape Wine Res 1(2):100–103CrossRefGoogle Scholar
  30. Mattivi F, Guzzon R, Vrhovsek U, Stefanini M, Velasco R (2006) Metabolite profiling of grape: flavonols and anthocyanins. J Agric Food Chem 54:7692–7702CrossRefPubMedGoogle Scholar
  31. McIntyre GN, Kliewer WM, Lider LA (1987) Some limitations of the degree day system as used in viticulture in California. Am J Enol Vitic 38:128–132Google Scholar
  32. Mori K, Sugaya S, Gemma H (2005) Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Sci Hortic 105:319–330CrossRefGoogle Scholar
  33. Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K (2007) Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot 58:1935–1945CrossRefPubMedGoogle Scholar
  34. Muñoz C, Gomez-Talquenca S, Chialva C, Ibáñez J, Martinez-Zapater JM, Peña-Neira A, Lijavetzky D (2014) Relationships among gene expression and anthocyanin composition of Malbec grapevine clones. J Agric Food Chem 62:6716–6725CrossRefPubMedGoogle Scholar
  35. Oren-Shamir M (2009) Does anthocyanin degradation play a significant role in determining pigment concentration in plants. Plant Sci 177:310–316CrossRefGoogle Scholar
  36. Oren-Shamir M, Nissim-Levi A (1999) Temperature and gibberellin effect on growth and anthocyanin pigmentation in Photinia leaves. J Hortic Sci Biotec 74:355–360CrossRefGoogle Scholar
  37. Passardi F, Theiler G, Zamocky M, Cosio C, Rouhier N, Teixera F, Dunand C (2007) PeroxiBase: the peroxidase database. Phytochem 68:1605–1611CrossRefGoogle Scholar
  38. Pastore C, Zenoni S, Tornielli GB, Allegro G, Dal Santo S, Valentini G, Intrieri C, Pezzotti M, Filippetti I (2011) Increasing the source/sink ratio in Vitis vinifera (cv Sangiovese) induces extensive transcriptome reprogramming and modifies berry ripening. BMC Genom 12:631CrossRefGoogle Scholar
  39. Pastore C, Zenoni S, Fasoli M, Pezzotti M, Tornielli GB, Filippetti I (2013) Selective defoliation affects plant growth, fruit transcriptional ripening program and flavonoid metabolism in grapevine. BMC Plant Biol 13:30CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pérez FJ, Villegas D, Meja N (2002) Ascorbic acid and flavonoid-peroxidase reaction as a detoxifying system of H2O2 in grapevine leaves. Phytochem 60:573–580CrossRefGoogle Scholar
  41. Pfaffl MW, Hageleit M (2001) Validities of mRNA quantification using recombinant RNA and recombinant DNA external calibration curves in real-time RT-PCR. Biotec Letters 23:275–282CrossRefGoogle Scholar
  42. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pilati S, Perazzolli M, Malossini A, Cestaro A, Demattè L, Fontana P, Dal Ri A, Viola R, Velasco R, Moser C (2007) Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at veraison. BMC Genom 8:428CrossRefGoogle Scholar
  44. Pirie A, Mullins MG (1980) Concentration of phenolics in the skin of grape berries during fruit development and ripening. Am J Enol Vitic 31:34–36Google Scholar
  45. Pourcel L, Routaboul JM, Cheynier V, Lepiniec L, Debeaoujon I (2006) Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci 12:29–36CrossRefPubMedGoogle Scholar
  46. Ramakers JM, Ruijter RHL, Deprez AFM, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66CrossRefPubMedGoogle Scholar
  47. Rienth M, Torregrosa L, Luchaire N, Chatbanyong R, Lecourieux D, Kelly MT, Romieu C (2014) Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (Vitis vinifera) fruit. BMC Plant Biol 14:108CrossRefPubMedPubMedCentralGoogle Scholar
  48. Robinson BS, Bretherick MR, Donnelly JK (1989) The heat stability and isoenzyme composition of peroxidases in Ohane grapes. Intern J Food Sci Tech 24:613–618CrossRefGoogle Scholar
  49. Sadras VO, Moran MA (2012) Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust J Grape Wine Res 18:115–122CrossRefGoogle Scholar
  50. Sadras VO, Petrie PR, Moran MA (2013) Effects of elevated temperature in grapevine. II juice pH, titratable acidity and wine sensory attributes. Aust J Grape Wine Res 18:107–115CrossRefGoogle Scholar
  51. Spayd SE, Tarara JM, Mee DL, Ferguson JL (2002) Separation of sunlight and temperature effects on the composition of Vitis vinifera cv Merlot Berries. Am J Enol Vitic 53:171–182Google Scholar
  52. Tarara JM, Lee J, Spayd SE, Scagel CF (2008) Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in merlot grapes. Am J Enol Vitic 59:235–247Google Scholar
  53. Tognolli M, Penel C, Greppin H, Simon P (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene 288:129–138CrossRefPubMedGoogle Scholar
  54. Tomana T, Utsonomya N, Kataoka I (1979) The effect of environmental temperatures on fruit ripening on the tree. I. The effect of temperature around whole vines and clusters on coloration of Kyoho grapes. J Japanese Soc Hort Sci 48:261–266CrossRefGoogle Scholar
  55. Ushimaru T, Maki Y, Sano S, Koshiba T, Asada K, Tsuji H (1997) Induction of enzymes involved in the ascorbate-dependent antioxidative system, namely, ascorbate peroxidase, monodehydroascorbate reductase and dehydroascorbate reductase, after exposure to air of rice (Oriza sativa) seedling germinate und water. Plant Cell Physiol 38:541–549CrossRefGoogle Scholar
  56. Vaknin H, Bar-Akiva A, Ovadia R, Nissim-Levi A, Forer I, Weiss D, Oren-Shamir M (2005) Active anthocyanin degradation in Brunfelsia calycina (yesterday-today-tomorrow) flowers. Planta 222:19–26CrossRefPubMedGoogle Scholar
  57. Vámos-Vigyázó L, Haard NF (1981) Polyphenol oxidases and peroxidases in fruits and vegetables. Crit Rev Food Sci Nutr 15:49–127CrossRefPubMedGoogle Scholar
  58. Van der Meer IM (1999) Agrobacterium mediated transformation of petunia leaf disks plant cell culture protocols. In: Robert D Hall (ed) Methods in molecular biology. Humana Press, USA, pp 327–334Google Scholar
  59. Walker AR, Lee E, Bogs J, McDavid DAJ, Thomas MR, Robinson SP (2007) White grapes arose through mutation of two similar and adjacent regulatory genes. Plant Journal 49:772–785CrossRefPubMedGoogle Scholar
  60. Waterhouse AL (2002) Wine Phenolics. Ann NY Acad Sci 957:21–36CrossRefPubMedGoogle Scholar
  61. Wicks AS, Kliewer WM (1983) Further investigations into the relationship between anthocyanins, phenolics and soluble carbohydrates in grape berry skins. Am J Enol Vitic 34:114–116Google Scholar
  62. Winkler A, Cook JA, Kliewer WM, Lider LA (1974) General viticulture. University of California Press, pp 158–165Google Scholar
  63. Xie XB, Li S, Zhang RF, Zhao J, Chen YC, Zhao Q, Yao YX, Zhang XS, Hao YJ (2012) The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environ 35:1884–1897CrossRefPubMedGoogle Scholar
  64. Yamane T, Jeong SK, Goto-Yamamoto N, Koshita Y, Kobayashi S (2006) Effects of temperature on anthocyanin biosynthesis in grape berry skins. Am J Enol Vitic 57:54–59Google Scholar
  65. Zamboni A, Di Carli M, Guzzo F, Stocchero M, Zenoni S, Ferrarini A, Tononi P, Toffali K, Desiderio A, Lilley KS, Pè ME, Benvenuto E, Delledonne M, Pezzotti M (2010) Identification of putative stage-specific grapevine berry biomarkers and omics data integration into networks. Plant Physiol 154:439–1459CrossRefGoogle Scholar
  66. Zhang Z, Pang X, Xuewu D, Ji Z, Jiang Y (2005) Role of peroxidase in anthocyanin degradation in litchi fruit pericarp. Food Chem 90:47–52CrossRefGoogle Scholar
  67. Zipor G, Duarte P, Carqueijeiro I, Shahar L, Ovadia R, Teper-Bamnolker P, Eshel D, Levin Y, Doron-Faigenboim A, Sottomayor M, Oren-Shamir M (2014) In planta anthocyanin degradation by a vacuolar class III peroxidase in Brunfelsia calycina flowers. New Phytol 205:653–665CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2016

Authors and Affiliations

  • Nooshin Movahed
    • 1
  • Chiara Pastore
    • 1
  • Antonio Cellini
    • 1
  • Gianluca Allegro
    • 1
  • Gabriele Valentini
    • 1
  • Sara Zenoni
    • 2
  • Erika Cavallini
    • 2
  • Erica D’Incà
    • 2
  • Giovanni Battista Tornielli
    • 2
  • Ilaria Filippetti
    • 1
  1. 1.Department of Agricultural SciencesUniversity of BolognaBolognaItaly
  2. 2.Department of BiotechnologyUniversity of VeronaVeronaItaly

Personalised recommendations