Journal of Plant Research

, Volume 129, Issue 2, pp 137–148 | Cite as

Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana

  • Bobin Liu
  • Zhaohe Yang
  • Adam Gomez
  • Bin Liu
  • Chentao Lin
  • Yoshito Oka
JPR Symposium The Cutting Edge of Photoresponse Mechanisms: Photoreceptor and Signaling Mechanism

Abstract

Cryptochromes (CRY) are flavoproteins that direct a diverse array of developmental processes in response to blue light in plants. Conformational changes in CRY are induced by the absorption of photons and result in the propagation of light signals to downstream components. In Arabidopsis, CRY1 and CRY2 serve both distinct and partially overlapping functions in regulating photomorphogenic responses and photoperiodic flowering. For example, both CRY1 and CRY2 regulate the abundance of transcription factors by directly reversing the activity of E3 ubiquitin ligase on CONSTITUTIVE PHOTOMORPHOGENIC 1 and SUPPRESSOR OF PHYA-105 1 complexes in a blue light-dependent manner. CRY2 also specifically governs a photoperiodic flowering mechanism by directly interacting with a transcription factor called CRYPTOCHROME-INTERACTING BASIC-HELIX-LOOP-HELIX. Recently, structure/function analysis of CRY1 revealed that the CONSTITUTIVE PHOTOMORPHOGENIC 1 independent pathway is also involved in CRY1-mediated inhibition of hypocotyl elongation. CRY1 and CRY2 thus not only share a common pathway but also relay light signals through distinct pathways, which may lead to altered developmental programs in plants.

Keywords

Cryptochrome De-etiolation Flowering Photomorphogenesis Transcription 

Notes

Acknowledgments

This work was supported by the Program for New Century Excellent Talents in Fujian Province University and the School Special Development program of Fujian Agriculture and Forestry University (6112C035001).

References

  1. Ahmad M, Cashmore AR (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366:162–166PubMedCrossRefGoogle Scholar
  2. Ahmad M, Lin C, Cashmore AR (1995) Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. Plant J 8:653–658PubMedCrossRefGoogle Scholar
  3. Ahmad M, Jarillo JA, Cashmore AR (1998a) Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Plant Cell 10:197–208PubMedCentralPubMedGoogle Scholar
  4. Ahmad M, Jarillo JA, Smirnova O, Cashmore AR (1998b) The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol Cell 1:939–948PubMedCrossRefGoogle Scholar
  5. Bagnall DJ, King RW, Hangarter RP (1996) Blue-light promotion of flowering is absent in hy4 mutants of Arabidopsis. Planta 200:278–280PubMedCrossRefGoogle Scholar
  6. Banerjee R, Schleicher E, Meier S, Viana RM, Pokorny R, Ahmad M, Bittl R, Batschauer A (2007) The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone. J Biol Chem 282:14916–14922PubMedCrossRefGoogle Scholar
  7. Blazquez MA, Ahn JH, Weigel D (2003) A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat Genet 33:168–171PubMedCrossRefGoogle Scholar
  8. Bouly JP, Giovani B, Djamei A, Mueller M, Zeugner A, Dudkin EA, Batschauer A, Ahmad M (2003) Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1. Eur J Biochem 270:2921–2928PubMedCrossRefGoogle Scholar
  9. Bouly JP, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N, Meier S, Batschauer A, Galland P, Bittl R, Ahmad M (2007) Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. J Biol Chem 282:9383–9391PubMedCrossRefGoogle Scholar
  10. Brautigam CA, Smith BS, Ma Z, Palnitkar M, Tomchick DR, Machius M, Deisenhofer J (2004) Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana. Proc Natl Acad Sci USA 101:12142–12147PubMedCentralPubMedCrossRefGoogle Scholar
  11. Briggs WR, Christie JM, Salomon M (2001) Phototropins: a new family of flavin-binding blue light receptors in plants. Antioxid Redox Signal 3:775–788PubMedCrossRefGoogle Scholar
  12. Brudler R, Hitomi K, Daiyasu H, Toh H, Kucho K, Ishiura M, Kanehisa M, Roberts VA, Todo T, Tainer JA, Getzoff ED (2003) Identification of a new cryptochrome class. Structure, function, and evolution. Mol Cell 11:59–67PubMedCrossRefGoogle Scholar
  13. Bruggemann E, Handwerger K, Essex C, Storz G (1996) Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4 locus. Plant J 10:755–760PubMedCrossRefGoogle Scholar
  14. Burney S, Hoang N, Caruso M, Dudkin EA, Ahmad M, Bouly JP (2009) Conformational change induced by ATP binding correlates with enhanced biological function of Arabidopsis cryptochrome. FEBS Lett 583:1427–1433PubMedCrossRefGoogle Scholar
  15. Cailliez F, Müller P, Gallois M, de la Lande A (2014) ATP binding and aspartate protonation enhance photoinduced electron transfer in plant cryptochrome. J Am Chem Soc 136:12974–17986PubMedCrossRefGoogle Scholar
  16. Casal JJ (2000) Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants. Photochem Photobiol 71:1–11PubMedCrossRefGoogle Scholar
  17. Cashmore AR (2003) Cryptochromes: enabling plants and animals to determine circadian time. Cell 114:537–543PubMedCrossRefGoogle Scholar
  18. Cashmore AR, Jarillo JA, Wu YJ, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284:760–765PubMedCrossRefGoogle Scholar
  19. Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M (2011) The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62:335–364PubMedCrossRefGoogle Scholar
  20. Chen S, Lory N, Stauber J, Hoecker U (2015) Photoreceptor specificity in the light-induced and COP1-mediated rapid degradation of the repressor of photomorphogenesis SPA2 in Arabidopsis. PLoS Genet 11(9):e1005516PubMedCentralPubMedCrossRefGoogle Scholar
  21. El-Assal SE-D, Alonso-Blanco C, Peeters AJ, Raz V, Koornneef M (2001) A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet 29:435–440CrossRefGoogle Scholar
  22. Engelhard C, Wang X, Robles D, Moldt J, Essen LO, Batschauer A, Bittl R, Ahmad M (2014) Cellular metabolites enhance the light sensitivity of Arabidopsis cryptochrome through alternate electron transfer pathways. Plant Cell 26:4519–4531PubMedCentralPubMedCrossRefGoogle Scholar
  23. Exner V, Alexandre C, Rosenfeldt G, Alfarano P, Nater M, Caflisch A, Gruissem W, Batschauer A, Hennig L (2010) A gain-of-function mutation of Arabidopsis cryptochrome1 promotes flowering. Plant Physiol 154:1633–1645PubMedCentralPubMedCrossRefGoogle Scholar
  24. Fankhauser C, Ulm R (2011) Light-regulated interactions with SPA proteins underlie cryptochrome-mediated gene expression. Genes Dev 25:1004–1009PubMedCentralPubMedCrossRefGoogle Scholar
  25. Favory JJ, Stec A, Gruber H, Rizzini L, Oravecz A, Funk M, Albert A, Cloix C, Jenkins GI, Oakeley EJ, Seidlitz HK, Nagy F, Ulm R (2009) Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 28:591–601PubMedCentralPubMedCrossRefGoogle Scholar
  26. Fedele G, Edwards MD, Bhutani S, Hares JM, Murbach M, Green EW, Dissel S, Hastings MH, Rosato E, Kyriacou CP (2014) Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster. PLoS Genet 10:e1004804PubMedCentralPubMedCrossRefGoogle Scholar
  27. Folta KM, Pontin MA, Karlin-Neumann G, Bottini R, Spalding EP (2003) Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light. Plant J 36:203–214PubMedCrossRefGoogle Scholar
  28. Gao J, Wang X, Zhang M, Bian M, Deng W, Zuo Z, Yang Z, Zhong D, Lin C (2015) Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1. Proc Natl Acad Sci USA 112:9135–9140PubMedCentralPubMedCrossRefGoogle Scholar
  29. Gegear RJ, Foley LE, Casselman A, Reppert SM (2010) Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature 463:804–807PubMedCentralPubMedCrossRefGoogle Scholar
  30. Goto N, Kumagai T, Koornneef M (1991) Flowering responses to light-breaks in photomorphogenic mutants of Arabidopsis thaliana, a long-day plant. Physiol Plant 83:209–215CrossRefGoogle Scholar
  31. Gu NN, Zhang YC, Yang HQ (2012) Substitution of a conserved glycine in the PHR domain of Arabidopsis cryptochrome 1 confers a constitutive light response. Mol Plant 5:85–97PubMedCrossRefGoogle Scholar
  32. Guo H, Yang H, Mockler TC, Lin C (1998) Regulation of flowering time by Arabidopsis photoreceptors. Science 279:1360–1363PubMedCrossRefGoogle Scholar
  33. Guo H, Duong H, Ma N, Lin C (1999) The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism. Plant J 19:279–287PubMedCrossRefGoogle Scholar
  34. He SB, Wang WX, Zhang JY, Xu F, Lian HL, Li L, Yang HQ (2015) The CNT1 domain of Arabidopsis CRY1 alone is sufficient to mediate blue light inhibition of hypocotyl elongation. Mol Plant 8:822–825PubMedCrossRefGoogle Scholar
  35. Hense A, Herman E, Oldemeyer S, Kottke T (2015) Proton transfer to flavin stabilizes the signaling state of the blue light receptor plant cryptochrome. J Biol Chem 290:1743–1751PubMedCentralPubMedCrossRefGoogle Scholar
  36. Hoang N, Bouly JP, Ahmad M (2008) Evidence of a light-sensing role for folate in Arabidopsis cryptochrome blue-light receptors. Mol Plant 1:68–74PubMedCrossRefGoogle Scholar
  37. Immeln D, Schlesinger R, Heberle J, Kottke T (2007) Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome. J Biol Chem 282:21720–21728PubMedCrossRefGoogle Scholar
  38. Immeln D, Pokorny R, Herman E, Moldt J, Batschauer A, Kottke T (2010) Photoreaction of plant and DASH cryptochromes probed by infrared spectroscopy: the neutral radical state of flavoproteins. J Phys Chem B 114:17155–17161PubMedCrossRefGoogle Scholar
  39. Jang S, Marchal V, Panigrahi KC, Wenkel S, Soppe W, Deng XW, Valverde F, Coupland G (2008) Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J 27:1277–1288PubMedCentralPubMedCrossRefGoogle Scholar
  40. Jeong RD, Chandra-Shekara AC, Barman SR, Navarre D, Klessig DF, Kachroo A, Kachroo P (2010) Cryptochrome 2 and phototropin 2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase. Proc Natl Acad Sci USA 107:13538–13543PubMedCentralPubMedCrossRefGoogle Scholar
  41. Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8:217–230PubMedCrossRefGoogle Scholar
  42. Kami C, Lorrain S, Hornitschek P, Fankhauser C (2010) Light-regulated plant growth and development. Curr Top Dev Biol 91:29–66PubMedCrossRefGoogle Scholar
  43. Kang CY, Lian HL, Wang FF, Huang JR, Yang HQ (2009) Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. Plant Cell 21:2624–2641PubMedCentralPubMedCrossRefGoogle Scholar
  44. Kavakli IH, Sancar A (2004) Analysis of the role of intraprotein electron transfer in photoreactivation by DNA photolyase in vivo. Biochemistry 43:15103–15110PubMedCrossRefGoogle Scholar
  45. Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL (2010) Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 7:973–975PubMedCentralPubMedCrossRefGoogle Scholar
  46. Kleine T, Lockhart P, Batschauer A (2003) An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Plant J 35:93–103PubMedCrossRefGoogle Scholar
  47. Kleiner O, Kircher S, Harter K, Batschauer A (1999) Nuclear localization of the Arabidopsis blue light receptor cryptochrome 2. Plant J 19:289–296PubMedCrossRefGoogle Scholar
  48. Kondoh M, Shiraishi C, Müller P, Ahmad M, Hitomi K, Getzoff ED, Terazima M (2011) Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome. J Mol Biol 413:128–137PubMedCentralPubMedCrossRefGoogle Scholar
  49. Kottke T, Batschauer A, Ahmad M, Heberle J (2006) Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy. Biochemistry 45:2472–2479PubMedCrossRefGoogle Scholar
  50. Lau OS, Deng XW (2012) The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci 17:584–593PubMedCrossRefGoogle Scholar
  51. Laubinger S, Fittinghoff K, Hoecker U (2004) The SPA quartet: a family of WD-repeat proteins with a central role in suppression of photomorphogenesis in Arabidopsis. Plant Cell 16:2293–2306PubMedCentralPubMedCrossRefGoogle Scholar
  52. Laubinger S, Marchal V, Le Gourrierec J, Wenkel S, Adrian J, Jang S, Kulajta C, Braun H, Coupland G, Hoecker U (2006) Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 133:3213–3222PubMedCrossRefGoogle Scholar
  53. Li YF, Sancar A (1990) Active site of Escherichia coli DNA photolyase: mutations at Trp277 alter the selectivity of the enzyme without affecting the quantum yield of photorepair. Biochemistry 29:5698–5706PubMedCrossRefGoogle Scholar
  54. Li QH, Yang HQ (2007) Cryptochrome signaling in plants. Photochem Photobiol 83:94–101PubMedCrossRefGoogle Scholar
  55. Li YF, Heelis PF, Sancar A (1991) Active site of DNA photolyase: tryptophan-306 is the intrinsic hydrogen atom donor essential for flavin radical photoreduction and DNA repair in vitro. Biochemistry 30:6322–6329PubMedCrossRefGoogle Scholar
  56. Li X, Wang Q, Yu X, Liu H, Yang H, Zhao C, Liu X, Tan C, Klejnot J, Zhong D, Lin C (2011) Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction. Proc Natl Acad Sci USA 108:20844–20849PubMedCentralPubMedCrossRefGoogle Scholar
  57. Lian HL, He SB, Zhang YC, Zhu DM, Zhang JY, Jia KP, Sun SX, Li L, Yang HQ (2011) Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism. Genes Dev 25:1023–1028PubMedCentralPubMedCrossRefGoogle Scholar
  58. Lin C, Shalitin D (2003) Cryptochrome structure and signal transduction. Annu Rev Plant Biol 54:469–496PubMedCrossRefGoogle Scholar
  59. Lin C, Todo T (2005) The cryptochromes. Genome Biol 6:220PubMedCentralPubMedCrossRefGoogle Scholar
  60. Lin C, Robertson DE, Ahmad M, Raibekas AA, Jorns MS, Dutton PL, Cashmore AR (1995) Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science 269:968–970PubMedCrossRefGoogle Scholar
  61. Lin C, Yang H, Guo H, Mockler T, Chen J, Cashmore AR (1998) Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci USA 95:2686–2690PubMedCentralPubMedCrossRefGoogle Scholar
  62. Liu H, Yu X, Li K, Klejnot J, Yang H, Lisiero D, Lin C (2008a) Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322:1535–1539PubMedCrossRefGoogle Scholar
  63. Liu LJ, Zhang YC, Li QH, Sang Y, Mao J, Lian HL, Wang L, Yang HQ (2008b) COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 20:292–306PubMedCentralPubMedCrossRefGoogle Scholar
  64. Liu B, Liu H, Zhong D, Lin C (2010) Searching for a photocycle of the cryptochrome photoreceptors. Curr Opin Plant Biol 13:578–586PubMedCentralPubMedCrossRefGoogle Scholar
  65. Liu B, Zuo Z, Liu H, Liu X, Lin C (2011a) Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes Dev 25:1029–1034PubMedCentralPubMedCrossRefGoogle Scholar
  66. Liu H, Liu B, Zhao C, Pepper M, Lin C (2011b) The action mechanisms of plant cryptochromes. Trends Plant Sci 16:684–691PubMedCentralPubMedCrossRefGoogle Scholar
  67. Liu H, Wang Q, Liu Y, Zhao X, Imaizumi T, Somers DE, Tobin EM, Lin C (2013a) Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms. Proc Natl Acad Sci USA 110:17582–17587PubMedCentralPubMedCrossRefGoogle Scholar
  68. Liu Y, Li X, Li K, Liu H, Lin C (2013b) Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis. PLoS Genet 9:e1003861PubMedCentralPubMedCrossRefGoogle Scholar
  69. Lu XD, Zhou CM, Xu PB, Luo Q, Lian HL, Yang HQ (2015) Red-light-dependent interaction of phyB with SPA1 promotes COP1-SPA1 dissociation and photomorphogenic development in Arabidopsis. Mol Plant 8(3):467–478PubMedCrossRefGoogle Scholar
  70. Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, Deng XW (2001) Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13:2589–2607PubMedCentralPubMedCrossRefGoogle Scholar
  71. Malhotra K, Kim ST, Batschauer A, Dawut L, Sancar A (1995) Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity. Biochemistry 34:6892–6899PubMedCrossRefGoogle Scholar
  72. Mao J, Zhang YC, Sang Y, Li QH, Yang HQ (2005) From the cover: a role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci USA 102:12270–12275PubMedCentralPubMedCrossRefGoogle Scholar
  73. Más P, Devlin PF, Panda S, Kay SA (2000) Functional interaction of phytochrome B and cryptochrome 2. Nature 408:207–211PubMedCrossRefGoogle Scholar
  74. Meng Y, Li H, Wang Q, Liu B, Lin C (2013) Blue light-dependent interaction between cryptochrome2 and CIB1 regulates transcription and leaf senescence in soybean. Plant Cell 25:4405–4420PubMedCentralPubMedCrossRefGoogle Scholar
  75. Mockler TC, Guo H, Yang H, Duong H, Lin C (1999) Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126(10):2073–2082PubMedGoogle Scholar
  76. Mockler T, Yang H, Yu X, Parikh D, Cheng YC, Dolan S, Lin C (2003) Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc Natl Acad Sci USA 100:2140–2145PubMedCentralPubMedCrossRefGoogle Scholar
  77. Mohr H (1994) Coaction between pigment systems. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants, 2nd edn. Kluwer Academic Publishers, Dordrecht, pp 353–373CrossRefGoogle Scholar
  78. Mozley D, Thomas B (1995) Developmental and photobiological factors affecting photoperiodic induction in Arabidopsis thaliana Heynh. Landsberg erecta. J Exp Bot 46:173–179CrossRefGoogle Scholar
  79. Müller P, Bouly JP (2015) Searching for the mechanism of signalling by plant photoreceptor cryptochrome. FEBS Lett 589:189–192PubMedCrossRefGoogle Scholar
  80. Müller P, Bouly JP, Hitomi K, Balland V, Getzoff ED, Ritz T, Brettel K (2014) ATP binding turns plant cryptochrome into an efficient natural photoswitch. Sci Rep 5:5175Google Scholar
  81. Nangle SN, Rosensweig C, Koike N, Tei H, Takahashi JS, Green CB, Zheng N (2014) Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex. Elife 15:e03674Google Scholar
  82. Neff MM, Chory J (1998) Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol 118(1):27–35PubMedCentralPubMedCrossRefGoogle Scholar
  83. Ohgishi M, Saji K, Okada K, Sakai T (2004) Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc Natl Acad Sci USA 101:2223–2228PubMedCentralPubMedCrossRefGoogle Scholar
  84. Osterlund MT, Hardtke CS, Wei N, Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466PubMedCrossRefGoogle Scholar
  85. Ozgur S, Sancar A (2006) Analysis of autophosphorylating kinase activities of Arabidopsis and human cryptochromes. Biochemistry 45:13369–13374PubMedCentralPubMedCrossRefGoogle Scholar
  86. Ozturk N, Selby CP, Annayev Y, Zhong D, Sancar A (2011) Reaction mechanism of Drosophila cryptochrome. Proc Natl Acad Sci USA 108:516–521PubMedCentralPubMedCrossRefGoogle Scholar
  87. Oztürk N, Song SH, Selby CP, Sancar A (2008) Animal type 1 cryptochromes. Analysis of the redox state of the flavin cofactor by site-directed mutagenesis. J Biol Chem 283:3256–3263PubMedCrossRefGoogle Scholar
  88. Partch CL, Clarkson MW, Ozgur S, Lee AL, Sancar A (2005) Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor. Biochemistry 44:3795–3805PubMedCrossRefGoogle Scholar
  89. Pokorny R, Klar T, Hennecke U, Carell T, Batschauer A, Essen LO (2008) Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome. Proc Natl Acad Sci USA 105:21023–21027PubMedCentralPubMedCrossRefGoogle Scholar
  90. Ritz T, Adem S, Schulten K (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J 78:707–718PubMedCentralPubMedCrossRefGoogle Scholar
  91. Ritz T, Yoshii T, Helfrich-Foerster C, Ahmad M (2010) Cryptochrome: a photoreceptor with the properties of a magnetoreceptor? Commun Integr Biol 3:24–27PubMedCentralPubMedCrossRefGoogle Scholar
  92. Rosenfeldt G, Viana RM, Mootz HD, von Arnim AG, Batschauer A (2008) Chemically induced and light-independent cryptochrome photoreceptor activation. Mol Plant 1:4–14PubMedCrossRefGoogle Scholar
  93. Ruckle ME, DeMarco SM, Larkin RM (2007) Plastid signals remodel light signaling networks and are essential for efficient chloroplast biogenesis in Arabidopsis. Plant Cell 19:3944–3960PubMedCentralPubMedCrossRefGoogle Scholar
  94. Saijo Y, Sullivan JA, Wang H, Yang J, Shen Y, Rubio V, Ma L, Hoecker U, Deng XW (2003) The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev 17:2642–2647PubMedCentralPubMedCrossRefGoogle Scholar
  95. Sancar A (2003) Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev 103:2203–2237PubMedCrossRefGoogle Scholar
  96. Sang Y, Li QH, Rubio V, Zhang YC, Mao J, Deng XW, Yang HQ (2005) N-terminal domain-mediated homodimerization is required for photoreceptor activity of Arabidopsis CRYPTOCHROME 1. Plant Cell 17:1569–1584PubMedCentralPubMedCrossRefGoogle Scholar
  97. Searle I, Coupland G (2004) Induction of flowering by seasonal changes in photoperiod. EMBO J 23:1217–1222PubMedCentralPubMedCrossRefGoogle Scholar
  98. Selby CP, Sancar A (2006) A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity. Proc Natl Acad Sci USA 103:17696–17700PubMedCentralPubMedCrossRefGoogle Scholar
  99. Sellaro R, Hoecker U, Yanovsky M, Chory J, Casal JJ (2009) Synergism of red and blue light in the control of Arabidopsis gene expression and development. Curr Biol 19:1216–1220PubMedCentralPubMedCrossRefGoogle Scholar
  100. Seo HS, Yang JY, Ishikawa M, Bolle C, Ballesteros ML, Chua NH (2003) LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423:995–999PubMedCrossRefGoogle Scholar
  101. Shalitin D, Yang H, Mockler TC, Maymon M, Guo H, Whitelam GC, Lin C (2002) Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature 417:763–767PubMedCrossRefGoogle Scholar
  102. Shalitin D, Yu X, Maymon M, Mockler T, Lin C (2003) Blue light-dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1. Plant Cell 15:2421–2429PubMedCentralPubMedCrossRefGoogle Scholar
  103. Sheerin DJ, Menon C, zur Oven-Krockhaus S, Enderle B, Zhu L, Johnen P, Schleifenbaum F, Stierhof YD, Huq E, Hiltbrunner A (2015) Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex. Plant Cell 27(1):189–201PubMedCentralPubMedCrossRefGoogle Scholar
  104. Smith H (2000) Phytochromes and light signal perception by plants—an emerging synthesis. Nature 407:585–591PubMedCrossRefGoogle Scholar
  105. Song SH, Oztürk N, Denaro TR, Arat NO, Kao YT, Zhu H, Zhong D, Reppert SM, Sancar A (2007) Formation and function of flavin anion radical in cryptochrome 1 blue-light photoreceptor of monarch butterfly. J Biol Chem 282:17608–17612PubMedCrossRefGoogle Scholar
  106. Strasser B, Sanchez-Lamas M, Yanovsky MJ, Casal JJ, Cerdan PD (2010) Arabidopsis thaliana life without phytochromes. Proc Natl Acad Sci USA 107:4776–4781PubMedCentralPubMedCrossRefGoogle Scholar
  107. Tan ST, Dai C, Liu HT, Xue HW (2013) Arabidopsis casein kinase1 proteins CK1.3 and CK1.4 phosphorylate cryptochrome2 to regulate blue light signaling. Plant Cell 25:2618–2632PubMedCentralPubMedCrossRefGoogle Scholar
  108. Thöing C, Oldemeyer S, Kottke T (2015) Microsecond deprotonation of Aspartic Acid and response of the α/β subdomain precede C-terminal signaling in the blue light sensor plant cryptochrome. J Am Chem Soc 137:5990–5999PubMedCrossRefGoogle Scholar
  109. Usami T, Mochizuki N, Kondo M, Nishimura M, Nagatani A (2004) Cryptochromes and phytochromes synergistically regulate Arabidopsis root greening under blue light. Plant Cell Physiol 45(12):1798–1808PubMedCrossRefGoogle Scholar
  110. Wang H, Ma LG, Li JM, Zhao HY, Deng XW (2001) Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294:154–158PubMedCrossRefGoogle Scholar
  111. Wang FF, Lian HL, Kang CY, Yang HQ (2010) Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis thaliana. Mol Plant 3:246–259PubMedCrossRefGoogle Scholar
  112. Wang Q, Barshop WD, Bian M, Vashisht AA, He R, Yu X, Liu B, Nguyen P, Liu X, Zhao X, Wohlschlegel JA, Lin C (2015a) The blue light-dependent phosphorylation of the CCE domain determines the photosensitivity of Arabidopsis CRY2. Mol Plant 8:631–643PubMedCrossRefGoogle Scholar
  113. Wang X, Wang Q, Nguyen P, Lin C (2015b) Cryptochrome-mediated light responses in plants. Enzymes 35:167–189CrossRefGoogle Scholar
  114. Weidler G, Zur Oven-Krockhaus S, Heunemann M, Orth C, Schleifenbaum F, Harter K, Hoecker U, Batschauer A (2012) Degradation of Arabidopsis CRY2 is regulated by SPA proteins and phytochrome A. Plant Cell 24:2610–2623PubMedCentralPubMedCrossRefGoogle Scholar
  115. Wu G, Spalding EP (2007) Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings. Proc Natl Acad Sci USA 104:18813–18818PubMedCentralPubMedCrossRefGoogle Scholar
  116. Wu L, Yang HQ (2010) CRYPTOCHROME 1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis. Mol Plant 3:539–548PubMedCrossRefGoogle Scholar
  117. Yang HQ, Wu YJ, Tang RH, Liu D, Liu Y, Cashmore AR (2000) The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell 103:815–827PubMedCrossRefGoogle Scholar
  118. Yang HQ, Tang RH, Cashmore AR (2001) The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 13:2573–2587PubMedCentralPubMedCrossRefGoogle Scholar
  119. Yeh KC, Lagarias JC (1998) Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc Natl Acad Sci USA 95:13976–13981PubMedCentralPubMedCrossRefGoogle Scholar
  120. Yi C, Deng XW (2005) COP1-from plant photomorphogenesis to mammalian tumorigenesis. Trends Cell Biol 15:618–625PubMedCrossRefGoogle Scholar
  121. Yu X, Klejnot J, Zhao X, Shalitin D, Maymon M, Yang H, Lee J, Liu X, Lopez J, Lin C (2007a) Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus. Plant Cell 19:3146–3156PubMedCentralPubMedCrossRefGoogle Scholar
  122. Yu X, Shalitin D, Liu X, Maymon M, Klejnot J, Yang H, Lopez J, Zhao X, Bendehakkalu KT, Lin C (2007b) Derepression of the NC80 motif is critical for the photoactivation of Arabidopsis CRY2. Proc Natl Acad Sci USA 104:7289–7294PubMedCentralPubMedCrossRefGoogle Scholar
  123. Yu X, Sayegh R, Maymon M, Warpeha K, Klejnot J, Yang H, Huang J, Lee J, Kaufman L, Lin C (2009) Formation of nuclear bodies of Arabidopsis CRY2 in response to blue light is associated with its blue light-dependent degradation. Plant Cell 21:118–130PubMedCentralPubMedCrossRefGoogle Scholar
  124. Yu X, Liu H, Klejnot J, Lin C (2010) The cryptochrome blue light receptors. Arabidopsis Book 23:e0135CrossRefGoogle Scholar
  125. Yuan Q, Metterville D, Briscoe AD, Reppert SM (2007) Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol Biol Evol 24:948–955PubMedCrossRefGoogle Scholar
  126. Zeugner A, Byrdin M, Bouly JP, Bakrim N, Giovani B, Brettel K, Ahmad M (2005) Light-induced electron transfer in Arabidopsis cryptochrome-1 correlates with in vivo function. J Biol Chem 280:19437–19440PubMedCrossRefGoogle Scholar
  127. Zhu H, Yuan Q, Briscoe AD, Froy O, Casselman A, Reppert SM (2005) The two CRYs of the butterfly. Curr Biol 15:953–954CrossRefGoogle Scholar
  128. Zuo Z, Liu H, Liu B, Liu X, Lin C (2011) Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr Biol 21:841–847PubMedCentralPubMedCrossRefGoogle Scholar
  129. Zuo ZC, Meng YY, Yu XH, Zhang ZL, Feng DS, Sun SF, Liu B, Lin CT (2012) A study of the blue-light-dependent phosphorylation, degradation, and photobody formation of Arabidopsis CRY2. Mol Plant 5:726–733PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2016

Authors and Affiliations

  • Bobin Liu
    • 1
    • 2
  • Zhaohe Yang
    • 1
  • Adam Gomez
    • 3
  • Bin Liu
    • 4
  • Chentao Lin
    • 5
  • Yoshito Oka
    • 1
  1. 1.Basic Forestry and Proteomics Center, Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
  2. 2.College of ForestryFujian Agriculture and Forestry UniversityFuzhouChina
  3. 3.Molecular, Cellular and Integrative PhysiologyUniversity of CaliforniaLos AngelesUSA
  4. 4.Institute of Crop SciencesChinese Academy of Agriculture SciencesBeijingPeople’s Republic of China
  5. 5.Department of Molecular, Cell and Developmental BiologyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations