Journal of Plant Research

, Volume 129, Issue 1, pp 67–77 | Cite as

OsHKT2;2/1-mediated Na+ influx over K+ uptake in roots potentially increases toxic Na+ accumulation in a salt-tolerant landrace of rice Nona Bokra upon salinity stress

  • Kei Suzuki
  • Alex Costa
  • Hideki Nakayama
  • Maki Katsuhara
  • Atsuhiko Shinmyo
  • Tomoaki HorieEmail author
Regular Paper


HKT transporters are Na+-permeable membrane proteins, which mediate Na+ and K+ homeostasis in K+-depleted and saline environments in plants. Class II HKT transporters, a distinct subgroup found predominantly in monocots, are known to mediate Na+-K+ co-transport in principle. Here we report features of ion transport functions of No-OsHKT2;2/1, a class II transporter identified in a salt tolerant landrace of indica rice, Nona Bokra. We profiled No-OsHKT2;2/1 expression in organs of Nona Bokra plants with or without salinity stress. Dominant accumulation of the No-OsHKT2;2/1 transcript in K+-starved roots of Nona Bokra plants largely disappeared in response to 50 mM NaCl. We found that No-OsHKT2;2/1 expressed in the high-affinity K+ uptake deficient mutant of Saccharomyces cerevisiae and Xenopus laevis oocytes shows robust K+ selectivity even in the presence of a large amount of NaCl as reported previously. However, No-OsHKT2;2/1-expressing yeast cells exhibited Na+ hypersensitive growth under various concentrations of K+ and Na+ as the cells expressing Po-OsHKT2;2, a similar class II transporter from another salt tolerant indica rice Pokkali, when compared with the growth of cells harboring empty vector or cells expressing OsHKT2;4. The OsHKT2;4 protein expressed in Xenopus oocytes showed strong K+ selectivity in the presence of 50 mM NaCl in comparison with No-OsHKT2;2/1 and Po-OsHKT2;2. Together with apparent plasma membrane-localization of No-OsHKT2;2/1, these results point to possibilities that No-OsHKT2;2/1 could mediate destructive Na+ influx over K+ uptake in Nona Bokra plants upon salinity stress, and that a predominant physiological function of No-OsHKT2;2/1 might be the acquisition of Na+ and K+ in K+-limited environments.


HKT K+ uptake Na+ transport Rice Salt stress 



We would like to express our gratitude to Dr. Kazuya Yoshida and Prof. Yoshiyuki Murata (Okayama Univ.) for helpful discussions. We also would like to thank Prof. Jian Feng Ma (Okayama Univ.), Dr. Pulla Kaothien-Nakayama and Ms. Saori Okamura for the support of TEVC experiments, the comments on the manuscript and the assistance for this study, respectively. This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan 25119709 and the MEXT as part of Joint Research Program implemented at the Institute of Plant Science and Resources, Okayama University in Japan 2520, 2622, 2716 (to T.H.). The research in A.C. lab is supported by a grant from the Ministero dell’Istruzione, dell’Università e della Ricerca Fondo per gli Investimenti della Ricerca di Base (FIRB) 2010 RBFR10S1LJ_001.

Supplementary material

10265_2015_764_MOESM1_ESM.pptx (414 kb)
Supplementary material 1 (PPTX 414 kb)
10265_2015_764_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 18 kb)


  1. Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434PubMedCrossRefGoogle Scholar
  2. Bolte S, Talbot C, Boutte Y, Catrice O, Read ND, Satiat-Jeunemaitre B (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214:159–173PubMedCrossRefGoogle Scholar
  3. Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928PubMedPubMedCentralCrossRefGoogle Scholar
  4. Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant, Cell Environ 28:1230–1246CrossRefGoogle Scholar
  5. Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou M, Palmgren MG, Newman IA, Shabala S (2007) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol 145:1714–1725PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cuin TA, Betts SA, Chalmandrier R, Shabala S (2008) A root’s ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot 59:2697–2706PubMedPubMedCentralCrossRefGoogle Scholar
  7. Davenport RJ, Munoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant, Cell Environ 30:497–507CrossRefGoogle Scholar
  8. Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379PubMedPubMedCentralCrossRefGoogle Scholar
  9. Durell SR, Guy HR (1999) Structural models of the KtrB, TrkH, and Trk 1,2 symporters based on the structure of the KcsA K+ channel. Biophys J 77:789–807PubMedPubMedCentralCrossRefGoogle Scholar
  10. Durell SR, Hao Y, Nakamura T, Bakker EP, Guy HR (1999) Evolutionary relationship between K+ channels and symporters. Biophys J 77:775–788PubMedPubMedCentralCrossRefGoogle Scholar
  11. Flowers TJ, Läuchli A (1983) Sodium versus potassium: Substitution and compartmentation. Inorganic Plant Nutrition 15:651–681Google Scholar
  12. Garciadeblás B, Senn M, Banuelos M, Rodriguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J. 34:788–801PubMedCrossRefGoogle Scholar
  13. Gassmann W, Rubio F, Schroeder JI (1996) Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant J. 10:869–882CrossRefGoogle Scholar
  14. Gierth M, Mäser P (2007) Potassium transporters in plants–involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett 581:2348–2356PubMedCrossRefGoogle Scholar
  15. Golldack D, Su H, Quigley F, Kamasani UR, Munoz-Garay C, Balderas E, Popova OV, Bennett J, Bohnert HJ, Pantoja O (2002) Characterization of a HKT-type transporter in rice as a general alkali cation transporter. Plant J 31:529–542PubMedCrossRefGoogle Scholar
  16. Hamamoto S, Horie T, Hauser F, Deinlein U, Schroeder JI, Uozumi N (2014) HKT transporters mediate salt stress resistance in plants: from structure and function to the field. Curr Opin Biotech. 32C:113–120Google Scholar
  17. Haro R, Banuelos MA, Senn ME, Barrero-Gil J, Rodriguez-Navarro A (2005) HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast. Plant Physiol 139:1495–1506PubMedPubMedCentralCrossRefGoogle Scholar
  18. Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K/Na ratio in leaves during salinity stress. Plant, Cell Environ 33:552–565CrossRefGoogle Scholar
  19. Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J. 27:129–138PubMedCrossRefGoogle Scholar
  20. Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung HY, Miyao A, Hirochika H, An G, Schroeder JI (2007) Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J 26:3003–3014PubMedPubMedCentralCrossRefGoogle Scholar
  21. Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14:660–668PubMedPubMedCentralCrossRefGoogle Scholar
  22. Horie T, Brodsky DE, Costa A, Kaneko T, Lo Schiavo F, Katsuhara M, Schroeder JI (2011) K+ transport by the OsHKT2;4 transporter from rice with atypical Na+ transport properties and competition in permeation of K+ over Mg2+ and Ca2+ ions. Plant Physiol 156:1493–1507PubMedPubMedCentralCrossRefGoogle Scholar
  23. Horie T, Karahara I, Katsuhara M (2012) Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice 5:11. doi: 10.1186/1939-8433-5-11 CrossRefGoogle Scholar
  24. Huang S, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 142:1718–1727PubMedPubMedCentralCrossRefGoogle Scholar
  25. Jabnoune M, Espeout S, Mieulet D, Fizames C, Verdeil JL, Conejero G, Rodriguez-Navarro A, Sentenac H, Guiderdoni E, Abdelly C, Very AA (2009) Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiol 150:1955–1971PubMedPubMedCentralCrossRefGoogle Scholar
  26. Kato Y, Sakaguchi M, Mori Y, Saito K, Nakamura T, Bakker EP, Sato Y, Goshima S, Uozumi N (2001) Evidence in support of a four transmembrane-pore-transmembrane topology model for the Arabidopsis thaliana Na+/K+ translocating AtHKT1 protein, a member of the superfamily of K+ transporters. Proc Natl Acad Sci USA 98:6488–6493PubMedPubMedCentralCrossRefGoogle Scholar
  27. Lan WZ, Wang W, Wang SM, Lia LG, Buchanana BB, Hong-Xuan Lin HX, Gao JP, Luan S (2010) A rice high-affinity potassium transporter (HKT) conceals a calcium-permeable cation channel. Proc Natl Acad Sci USA 107:7089–7094PubMedPubMedCentralCrossRefGoogle Scholar
  28. Laurie S, Feeney FJ, Maathuis FJ, Heard PJ, Brown SJ, Leigh RA (2002) A role for HKT1 in sodium uptake by wheat roots. Plant J. 32:139–149PubMedCrossRefGoogle Scholar
  29. Lebaudy A, Very AA, Sentenac H (2007) K+ channel activity in plants: genes, regulations and functions. FEBS Lett 581:2357–2366PubMedCrossRefGoogle Scholar
  30. Ma JF, Goto S, Tamai K, Ichii M (2001) Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol 127:1773–1780PubMedPubMedCentralCrossRefGoogle Scholar
  31. Maathuis FJM, Verlin D, Smith FA, Sanders D, Fernandez JA, Walker NA (1996) The physiological relevance of Na+-coupled K+-transport. Plant Physiol 112:1609–1616PubMedPubMedCentralGoogle Scholar
  32. Mäser P, Eckelman B, Vaidyanathan R, Horie T, Fairbairn DJ, Kubo M, Yamagami K, Yamaguchi K, Nishimura M, Uozumi N, Robertson W, Sussman MR, Schroeder JI (2002a) Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett 531:157–161PubMedCrossRefGoogle Scholar
  33. Mäser P, Hosoo Y, Goshima S, Horie T, Eckelman B, Yamada K, Yoshida K, Bakker EP, Shinmyo A, Oiki S, Schroeder JI, Uozumi N (2002b) Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proc Natl Acad Sci USA 99:6428–6433PubMedPubMedCentralCrossRefGoogle Scholar
  34. Mian A, Oomen RJ, Isayenkov S, Sentenac H, Maathuis FJ, Very AA (2011) Over-expression of an Na+-and K+-permeable HKT transporter in barley improves salt tolerance. Plant J. 68:468–479PubMedCrossRefGoogle Scholar
  35. Møller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell. 21:2163–2178PubMedPubMedCentralCrossRefGoogle Scholar
  36. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedCrossRefGoogle Scholar
  37. Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotech 30:360–364CrossRefGoogle Scholar
  38. Oomen RJFJ, Benito B, Sentenac H, Rodriguez-Navarro A, Talon M, Very AA, Domingo C (2012) HKT2;2/1, a K+-permeable transporter identified in a salt-tolerant rice cultivar through surveys of natural genetic polymorphism. Plant J 71:750–762PubMedCrossRefGoogle Scholar
  39. Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146PubMedCrossRefGoogle Scholar
  40. Rodríguez-Navarro A, Ramos J (1984) Dual system for potassium transport in Saccharomyces cerevisiae. J Bacteriol 159:940–945PubMedPubMedCentralGoogle Scholar
  41. Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663PubMedCrossRefGoogle Scholar
  42. Sassi A, Mieulet D, Khan I, Moreau B, Gaillard I, Sentenac H, Very AA (2012) The rice monovalent cation transporter OsHKT2;4: revisited ionic selectivity. Plant Physiol 160:498–510PubMedPubMedCentralCrossRefGoogle Scholar
  43. Schachtman DP, Schroeder JI (1994) Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370:655–658PubMedCrossRefGoogle Scholar
  44. Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L, Horie T, Kochian LV, Munns R, Nishizawa NK, Tsay YF, Sanders D (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497:60–66PubMedPubMedCentralCrossRefGoogle Scholar
  45. Sunarpi Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J. 44:928–938PubMedCrossRefGoogle Scholar
  46. Takai T, Nonoue Y, Yamamoto S, Yamanouchi U, Matsubara K, Liang ZW, Lin HX, Ono N, Uga Y, Yano M (2007) Development of chromosome segment substitution lines derived from backcross between indica donor rice cultivar ‘Nona Bokra’ and Japonica recipient cultivar ‘Koshihikari’. Breed Sci. 57:257–261CrossRefGoogle Scholar
  47. Tholema N, Vor der Bruggen M, Maser P, Nakamura T, Schroeder JI, Kobayashi H, Uozumi N, Bakker EP (2005) All four putative selectivity filter glycine residues in KtrB are essential for high affinity and selective K+ uptake by the KtrAB system from Vibrio alginolyticus. J Biol Chem 280:41146–41154PubMedCrossRefGoogle Scholar
  48. Walker NA, Sanders D, Maathuis FJ (1996) High-affinity potassium uptake in plants. Science 273:977–979PubMedCrossRefGoogle Scholar
  49. Wu H, Shabala L, Zhou M, Shabala S (2014) Durum and bread wheat differ in their ability to retain potassium in leaf mesophyll: implications for salinity stress tolerance. Plant Cell Physiol 55:1749–1762PubMedCrossRefGoogle Scholar
  50. Wu H, Zhu M, Shabala L, Zhou M, Shabala S (2015) K+ retention in leaf mesophyll, an overlooked component of salinity tolerance mechanism: a case study for barley. J Integ Plant Biol. 57:171–185CrossRefGoogle Scholar
  51. Yao X, Horie T, Xue S, Leung HY, Katsuhara M, Brodsky DE, Wu Y, Schroeder JI (2010) Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells. Plant Physiol 152:341–355PubMedPubMedCentralCrossRefGoogle Scholar
  52. Yenush L, Mulet JM, Arino J, Serrano R (2002) The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. EMBO J 21:920–929PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2015

Authors and Affiliations

  • Kei Suzuki
    • 1
  • Alex Costa
    • 2
    • 6
  • Hideki Nakayama
    • 3
  • Maki Katsuhara
    • 4
  • Atsuhiko Shinmyo
    • 5
  • Tomoaki Horie
    • 1
    Email author
  1. 1.Division of Applied Biology, Faculty of Textile Science and TechnologyShinshu UniversityUedaJapan
  2. 2.Department of BiosciencesUniversity of MilanMilanItaly
  3. 3.Institute of Environmental Studies, Graduate School of Fisheries Science and Environmental StudiesNagasaki UniversityNagasakiJapan
  4. 4.Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
  5. 5.Nara Institute of Science and TechnologyIkomaJapan
  6. 6.Institute of BiophysicsConsiglio Nazionale delle RicercheMilanItaly

Personalised recommendations