Journal of Plant Research

, Volume 129, Issue 1, pp 93–102 | Cite as

Functional analyses of the plant-specific C-terminal region of VPS9a: the activating factor for RAB5 in Arabidopsis thaliana

  • Mariko Sunada
  • Tatsuaki Goh
  • Takashi UedaEmail author
  • Akihiko Nakano
Regular Paper


Recent studies demonstrated that endosomal transport played important roles in various plant functions. The RAB GTPase regulates the tethering and fusion steps of vesicle trafficking to target membranes in each trafficking pathway by acting as a molecular switch. RAB GTPase activation is catalyzed by specific guanine nucleotide exchange factors (GEFs) that promote the exchange of GDP on the RAB GTPase with GTP. RAB5 is a key regulator of endosomal trafficking and is uniquely diversified in plants; the plant-unique RAB5 group ARA6 was acquired in addition to conventional RAB5 during evolution. In Arabidopsis thaliana, conventional RAB5, ARA7 and RHA1 regulate the endosomal/vacuolar trafficking pathways, whereas ARA6 acts in the pathway from the endosome to the plasma membrane. Despite their distinct functions, all RAB5 members are activated by the common GEF VACUOLAR PROTEIN SORTING 9a (VPS9a). VPS9a consists of an N-terminal conserved domain and C-terminal region (CTR) with no similarity to known functional domains. In this study, we investigated the function of the CTR by generating truncated versions of VPS9a and found that it was specifically responsible for ARA6 regulation; moreover, the CTR was required for the oligomerization and correct localization of VPS9a. The oligomerization of VPS9a was mediated by a distinctive region consisting of 36 amino acids in the CTR that was conserved in plant RAB5 GEFs. Thus the VPS9a CTR plays an important role in the regulation of the two RAB5 groups in plants.


Arabidopsis thaliana Endosome Guanine nucleotide exchange factor RAB5 VPS9a 



We thank Dr. T. Nakagawa (Shimane University), Dr. S. Shimizu (Tokyo Medical and Dental University) and Dr. T. Demura (NAIST) for sharing materials and Dr. K. Ebine and Dr. E. Ito (The University of Tokyo) for critical reading of the manuscript. This study was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (A.N. and T.U.), JST, PRESTO (T.U.), and a Grant-in-Aid for JSPS Fellows (M.S.).

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

Supplementary material

10265_2015_760_MOESM1_ESM.pdf (51 kb)
Supplementary Figure S1 (PDF 51 kb)


  1. Asaoka R, Uemura T, Ito J, Fujimoto M, Ito E, Ueda T, Nakano A (2013) Arabidopsis RABA1 GTPases are involved in transport between the trans-Golgi network and the plasma membrane, and are required for salinity stress tolerance. Plant J 73:240–249PubMedCrossRefGoogle Scholar
  2. Bolte S, Brown S, Satiat-Jeunemaitre B (2004) The N-myristoylated Rab-GTPase m-Rabmc is involved in post-Golgi trafficking events to the lytic vacuole in plant cells. J Cell Sci 117:943–954PubMedCrossRefGoogle Scholar
  3. Bottanelli F, Foresti O, Hanton S, Denecke J (2011) Vacuolar transport in tobacco leaf epidermis cells involves a single route for soluble cargo and multiple routes for membrane cargo. Plant Cell 23:3007–3025PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bravo-Sagua R, Torrealba N, Paredes F, Morales PE, Pennanen C, López-Crisosto C, Troncoso R, Criollo A, Chiong M, Hill JA, Simmen T, Quest AF, Lavandero S (2014) Organelle communication: signaling crossroads between homeostasis and disease. Int J Biochem Cell Biol 50:55–59PubMedCrossRefGoogle Scholar
  5. Burd CG, Mustol PA, Schu PV, Emr SD (1996) A yeast protein related to a mammalian Ras-binding protein, Vps9p, is required for localization of vacuolar proteins. Mol Cell Biol 16:2369–2377PubMedPubMedCentralCrossRefGoogle Scholar
  6. Carney DS, Davies BA, Horazdovsky BF (2006) Vps9 domain-containing proteins: activators of Rab5 GTPases from yeast to neurons. Trends Cell Biol 16:27–35PubMedCrossRefGoogle Scholar
  7. Choi S, Tamaki T, Ebine K, Uemura T, Ueda T, Nakano A (2013) RABA members act in distinct steps of subcellular trafficking of the FLAGELLIN SENSING2 receptor. Plant Cell 25:1174–1187PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chow C-M, Neto H, Foucart C, Moore I (2008) Rab-A2 and Rab-A3 GTPases define a trans-Golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell 20:101–123PubMedPubMedCentralCrossRefGoogle Scholar
  9. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedCrossRefGoogle Scholar
  10. Dacks JB, Field MC (2007) Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J Cell Sci 120:2977–2985PubMedCrossRefGoogle Scholar
  11. Dacks JB, Poon PP, Field MC (2008) Phylogeny of endocytic components yields insight into the process of nonendosymbiotic organelle evolution. Proc Natl Acad Sci USA 105:588–593PubMedPubMedCentralCrossRefGoogle Scholar
  12. De Graaf BHJ, Cheung AY, Andreyeva T, Levasseur K, Kieliszewski M, Wu H (2005) Rab11 GTPase-regulated membrane trafficking is crucial for tip-focused pollen tube growth in tobacco. Plant Cell 17:2564–2579PubMedPubMedCentralCrossRefGoogle Scholar
  13. Ebine K, Fujimoto M, Okatani Y, Nishiyama T, Goh T, Ito E, Dainobu T, Nishitani A, Uemura T, Sato MH, Thordal-Christensen H, Tsutsumi N, Nakano A, Ueda T (2011) A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat Cell Biol 13:853–859PubMedCrossRefGoogle Scholar
  14. Feraru E, Feraru MI, Asaoka R, Paciorek T, De Rycke R, Tanaka H, Nakano A, Friml J (2012) BEX5/RabA1b regulates trans-Golgi network-to-plasma membrane protein trafficking in Arabidopsis. Plant Cell 24:3074–3086PubMedPubMedCentralCrossRefGoogle Scholar
  15. Field MC, Natesan SKA, Gabernet-Castello C, Lila Koumandou V (2007) Intracellular trafficking in the trypanosomatids. Traffic 8:629–639PubMedCrossRefGoogle Scholar
  16. Fukuda M, Wen L, Satoh-Cruz M, Kawagoe Y, Nagamura Y, Okita TW, Washida H, Sugino A, Ishino Y, Ishino S, Ogawa M, Sunada M, Ueda T, Kumamaru T (2013) A guanine nucleotide exchange factor for Rab5 proteins is essential for intracellular transport of the proglutelin from the Golgi apparatus to the protein storage vacuole in rice endosperm. Plant Physiol 162:663–674PubMedPubMedCentralCrossRefGoogle Scholar
  17. Goh T, Uchida W, Arakawa S, Ito E, Dainobu T, Ebine K, Takeuchi M, Sato K, Ueda T, Nakano A (2007) VPS9a, the common activator for two distinct types of Rab5 GTPases, is essential for the development of Arabidopsis thaliana. Plant Cell 19:3504–3515PubMedPubMedCentralCrossRefGoogle Scholar
  18. Grebe M, Xu J, Möbius W, Ueda T, Nakano A, Geuze HJ, Rook MB, Scheres B (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 13:1378–1387PubMedCrossRefGoogle Scholar
  19. Green EG, Ramm E, Riley NM, Spiro DJ, Goldenring JR, Wessling-Resnick M (1997) Rab11 is associated with transferrin-containing recycling compartments in K562 cells. Biochem Biophys Res Commun 239:612–616PubMedCrossRefGoogle Scholar
  20. Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci USA 103:11821–11827PubMedPubMedCentralCrossRefGoogle Scholar
  21. Haas TJ, Sliwinski MK, Martínez DE, Preuss M, Ebine K, Ueda T, Nielsen E, Odorizzi G, Otegui MS (2007) The Arabidopsis AAA ATPase SKD1 is involved in multivesicular endosome function and interacts with its positive regulator LYST-INTERACTING PROTEIN5. Plant Cell 19:1295–1312PubMedPubMedCentralCrossRefGoogle Scholar
  22. Hama H, Tall GG, Horazdovsky BF (1999) Vps9p is a guanine nucleotide exchange factor involved in vesicle-mediated vacuolar protein transport. J Biol Chem 274:15284–15291PubMedCrossRefGoogle Scholar
  23. Hoepflinger MC, Geretschlaeger A, Sommer A, Hoeftberger M, Nishiyama T, Sakayama H, Hammerl P, Tenhaken R, Ueda T, Foissner I (2013) Molecular and biochemical analysis of the first ARA6 homologue, a RAB5 GTPase, from green algae. J Exp Bot 64:5553–5568PubMedPubMedCentralCrossRefGoogle Scholar
  24. Hoepflinger MC, Geretschlaeger A, Sommer A, Hoeftberger M, Hametner C, Ueda T, Foissner I (2015) Molecular analysis and localization of CaARA7 a conventional RAB5 GTPase from characean algae. Traffic 16:534–554PubMedCrossRefGoogle Scholar
  25. Horiuchi H, Lippé R, McBride HM, Rubino M, Woodman P, Stenmark H, Rybin V, Wilm M, Ashman K, Mann M, Zerial M (1997) A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90:1149–1159PubMedCrossRefGoogle Scholar
  26. Ito E, Fujimoto M, Ebine K, Uemura T, Ueda T, Nakano A (2012) Dynamic behavior of clathrin in Arabidopsis thaliana unveiled by live imaging. Plant J 69:204–216PubMedCrossRefGoogle Scholar
  27. Jaillais Y, Fobis-Loisy I, Miège C, Gaude T (2008) Evidence for a sorting endosome in Arabidopsis root cells. Plant J 53:237–247PubMedCrossRefGoogle Scholar
  28. Kotzer AM, Brandizzi F, Neumann U, Paris N, Moore I, Hawes C (2004) AtRabF2b (Ara7) acts on the vacuolar trafficking pathway in tobacco leaf epidermal cells. J Cell Sci 117:6377–6389PubMedCrossRefGoogle Scholar
  29. Kunita R, Otomo A, Mizumura H, Suzuki K, Showguchi-Miyata J, Yanagisawa Y, Hadano S, Ikeda JE (2004) Homo-oligomerization of ALS2 through its unique carboxyl-terminal regions is essential for the ALS2-associated Rab5 guanine nucleotide exchange activity and its regulatory function on endosome trafficking. J Biol Chem 279:38626–38635PubMedCrossRefGoogle Scholar
  30. Lippé R, Miaczynska M, Rybin V, Runge A, Zerial M (2001) Functional synergy between Rab5 effector Rabaptin-5 and exchange factor Rabex-5 when physically associated in a complex. Mol Biol Cell 12:2219–2228PubMedPubMedCentralCrossRefGoogle Scholar
  31. Mackiewicz P, Wyroba E (2009) Phylogeny and evolution of Rab7 and Rab9 proteins. BMC Evol Biol 9:101PubMedPubMedCentralCrossRefGoogle Scholar
  32. Mattera R, Yien CT, Weissman AM, Bonifacino JS (2006) The Rab5 guanine nucleotide exchange factor Rabex-5 binds ubiquitin (Ub) and functions as a Ub ligase through an atypical Ub-interacting motif and a zinc finger domain. J Biol Chem 281:6874–6883PubMedCrossRefGoogle Scholar
  33. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  34. Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyooka K, Matsuoka K, Jinbo T, Kimura T (2007) Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104:34–41PubMedCrossRefGoogle Scholar
  35. Penengo L, Mapelli M, Murachelli AG, Confalonieri S, Magri L, Musacchio A, Di Fiore PP, Polo S, Schneider TR (2006) Crystal structure of the ubiquitin binding domains of Rabex-5 reveals two modes of interaction with ubiquitin. Cell 124:1183–1195PubMedCrossRefGoogle Scholar
  36. Pereira-Leal JB (2008) The Ypt/Rab family and the evolution of trafficking in fungi. Traffic 9:27–38PubMedCrossRefGoogle Scholar
  37. Platta HW, Stenmark H (2011) Endocytosis and signaling. Curr Opin Cell Biol 23:393–403PubMedCrossRefGoogle Scholar
  38. Prag G, Misra S, Jones EA, Ghirlando R, Davies BA, Horazdovsky BF, Hurley JH (2003) Mechanism of ubiquitin recognition by the CUE domain of Vps9p. Cell 113:609–620PubMedCrossRefGoogle Scholar
  39. Ren M, Xu G, Zeng J, De Lemos-Chiarandini C, Adesnik M, Sabatini DD (1998) Hydrolysis of GTP on rab11 is required for the direct delivery of transferrin from the pericentriolar recycling compartment to the cell surface but not from sorting endosomes. Proc Natl Acad Sci USA 95:6187–6192PubMedPubMedCentralCrossRefGoogle Scholar
  40. Rutherford S, Moore I (2002) The Arabidopsis Rab GTPase family: another enigma variation. Curr Opin Plant Biol 5:518–528PubMedCrossRefGoogle Scholar
  41. Sato M, Sato K, Fonarev P, Huang C-J, Liou W, Grant BD (2005) Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit. Nat Cell Biol 7:559–569PubMedPubMedCentralCrossRefGoogle Scholar
  42. Schwartz SL, Cao C, Pylypenko O, Rak A, Wandinger-Ness A (2007) Rab GTPases at a glance. J Cell Sci 120:3905–3910PubMedCrossRefGoogle Scholar
  43. Sohn EJ, Kim ES, Zhao M, Kim SJ, Kim H, Kim Y-W, Lee YJ, Hillmer S, Sohn U, Jiang L, Hwang I (2003) Rha1, an Arabidopsis Rab5 homolog, plays a critical role in the vacuolar trafficking of soluble cargo proteins. Plant Cell 15:1057–1070PubMedPubMedCentralCrossRefGoogle Scholar
  44. Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525PubMedCrossRefGoogle Scholar
  45. Stierhof YD, El Kasmi F (2010) Strategies to improve the antigenicity, ultrastructure preservation and visibility of trafficking compartments in Arabidopsis tissue. Eur J Cell Biol 89:285–297PubMedCrossRefGoogle Scholar
  46. Szumlanski AL, Nielsen E (2009) The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana. Plant Cell 21:526–544PubMedPubMedCentralCrossRefGoogle Scholar
  47. Tall GG, Barbieri MA, Stahl PD, Horazdovsky BF (2001) Ras-activated endocytosis is mediated by the Rab5 guanine nucleotide exchange activity of RIN1. Dev Cell 1:73–82PubMedCrossRefGoogle Scholar
  48. Tian G-W, Mohanty A, Chary SN, Li S, Paap B, Drakakaki G, Kopec CD, Li J, Ehrhardt D, Jackson D, Rhee SY, Raikhel NV, Citovsky V (2004) High-throughput fluorescent tagging of full-length Arabidopsis gene products in planta. Plant Physiol 135:25–38PubMedPubMedCentralCrossRefGoogle Scholar
  49. Ueda T, Yamaguchi M, Uchimiya H, Nakano A (2001) Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J 20:4730–4741PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ueda T, Uemura T, Sato MH, Nakano A (2004) Functional differentiation of endosomes in Arabidopsis cells. Plant J 40:783–789PubMedCrossRefGoogle Scholar
  51. Uejima T, Ihara K, Goh T, Ito E, Sunada M, Ueda T, Nakano A, Wakatsuki S (2010) GDP-bound and nucleotide-free intermediates of the guanine nucleotide exchange in the Rab5·Vps9 system. J Biol Chem 285:36689–36697PubMedPubMedCentralCrossRefGoogle Scholar
  52. Ullrich O, Reinsch S, Urbé S, Zerial M, Parton RG (1996) Rab11 regulates recycling through the pericentriolar recycling endosome. J Cell Biol 135:913–924PubMedCrossRefGoogle Scholar
  53. Zhu H, Liang Z, Li G (2009) Rabex-5 is a Rab22 effector and mediates a Rab22–Rab5 signaling cascade in endocytosis. Mol Biol Cell 20:4072–4729Google Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2015

Authors and Affiliations

  • Mariko Sunada
    • 1
  • Tatsuaki Goh
    • 2
  • Takashi Ueda
    • 1
    • 3
    Email author
  • Akihiko Nakano
    • 1
    • 4
  1. 1.Department of Biological Sciences, Graduate School of SciencesThe University of TokyoTokyoJapan
  2. 2.Graduate School of ScienceKobe UniversityKobeJapan
  3. 3.Japan Science and Technology Agency (JST), PRESTOKawaguchiJapan
  4. 4.Live Cell Super-Resolution Imaging Research TeamRIKEN Center for Advances PhotonicsWakoJapan

Personalised recommendations