Journal of Plant Research

, Volume 128, Issue 6, pp 893–908 | Cite as

Karyotype characterization and evolution in South American species of Lathyrus (Notolathyrus, Leguminosae) evidenced by heterochromatin and rDNA mapping

  • Laura Chalup
  • Sergio Sebastián Samoluk
  • Viviana Solís Neffa
  • Guillermo Seijo
Regular Paper


Notolathyrus is a section of South American endemic species of the genus Lathyrus. The origin, phylogenetic relationship and delimitation of some species are still controversial. The present study provides an exhaustive analysis of the karyotypes of approximately half (10) of the species recognized for section Notolathyrus and four outgroups (sections Lathyrus and Orobus) by cytogenetic mapping of heterochromatic bands and 45S and 5S rDNA loci. The bulk of the parameters analyzed here generated markers to identify most of the chromosomes in the complements of the analyzed species. Chromosome banding showed interspecific variation in the amount and distribution of heterochromatin, and together with the distribution of rDNA loci, allowed the characterization of all the species studied here. Additionally, some of the chromosome parameters described (st chromosomes and the 45S rDNA loci) constitute the first diagnostic characters for the Notolathyrus section. Evolutionary, chromosome data revealed that the South American species are a homogeneous group supporting the monophyly of the section. Variation in the amount of heterochromatin was not directly related to the variation in DNA content of the Notolathyrus species. However, the correlation observed between the amount of heterochromatin and some geographical and bioclimatic variables suggest that the variation in the heterochromatic fraction should have an adaptive value.


Heterochromatin Karyotype Lathyrus rDNA loci 



This work was supported by the National Council of Scientific and Technological Research (CONICET) and National Agency for Scientific and Technological Promotion, PICTO-UNNE 090.


  1. Ali HBM, Meister A, Schubert I (2000) DNA content, rDNA loci, and DAPI bands reflect the phylogenetic distance between Lathyrus species. Genome 43:1027–1032CrossRefPubMedGoogle Scholar
  2. Arzani A (2006) Karyotype study in some Lathyrus L. accession of Iran. Iran J Sci Technol 30:9–17Google Scholar
  3. Asmussen CB, Liston A (1998) Chloroplast DNA characters, phylogeny, and classification of Lathyrus (Fabaceae). Am J Bot 85:387–401CrossRefPubMedGoogle Scholar
  4. Badr SF (2007) Karyotype analysis and chromosome evolution in species of Lathyrus (Fabaceae). Pak J Biol Sci 10:49–56CrossRefPubMedGoogle Scholar
  5. Bässler M (1966) Die stellung des sugen. Orobus (L.) Baker in der gattung Lathyrus L. und seine systematische gliederung. In Kupicha FK (1983) The infrageneric structure of Lathyrus. Notes Roy Bot Gard Edinb 41:209–244Google Scholar
  6. Battistin A, Fernández A (1994) Karyotypes of four species of South America natives and one cultivated species of Lathyrus L. Caryologia 47:325–330CrossRefGoogle Scholar
  7. Bennett MD, Gustafson JP, Smith JB (1977) Variation in nuclear DNA in the genus Secale. Chromosoma 61:149–176CrossRefGoogle Scholar
  8. Bertioli DJ, Vidigal B, Nielen S, Ratnaparkhe MB, Lee TH, Leal-Bertioli SCM, Kim C, Guimarães PM, Seijo G, Schwarzacher T, Paterson AH, Heslop-Harrison P, Araujo ACG (2013) The repetitive component of the A genome of peanut (Arachis hypogaea) and its role in remodelling intergenic sequence space since its evolutionary divergence from the B genome. Ann Bot 112:545–559PubMedCentralCrossRefPubMedGoogle Scholar
  9. Burkart A (1935) Revisión de las especies de Lathyrus de la República Argentina. Revista Fac Agron Univ Nac La Plata 8:41–128Google Scholar
  10. Burkart A (1942) Nuevas contribuciones a la sistemática de las especies sudamericanas de Lathyrus. Darwiniana 6:9–29Google Scholar
  11. Ceccarelli M, Sarri V, Polizzi E, Andreozzi G, Cionini PG (2010) Characterization, evolution and chromosomal distribution of two satellite DNA sequence families in Lathyrus species. Cytogenet Genome Res 128:236–244CrossRefPubMedGoogle Scholar
  12. Chalup L, Grabiele M, Solís Neffa V, Seijo G (2012) Structural karyotypic variability and polyploidy in natural populations of the South American Lathyrus nervosus Lam. (Fabaceae). Plant Syst Evol 298:761–773CrossRefGoogle Scholar
  13. Chalup L, Grabiele M, Solís Neffa V, Seijo G (2014) DNA content in South American endemic species of Lathyrus. J Plant Res 127:469–480CrossRefPubMedGoogle Scholar
  14. Deumling B, Greilhuber J (1982) Characterization of heterochromatin in different species of the Scilla siberica group (Liliaceae) by in situ hybridization of satellite DNAs and fluorochrome banding. Chromosoma 84:535–555CrossRefGoogle Scholar
  15. Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW (2013) InfoStat version 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.
  16. Fonsêca A, Pedrosa-Harand A (2013) Karyotype stability in the genus Phaseolus evidenced by the comparative mapping of the wild species Phaseolus microcarpus. Genome 56:335–343CrossRefPubMedGoogle Scholar
  17. Furuta Y, Nishikawa K (1991) Variation in nuclear chromosomal DNA content and its role in evolution of plants. In: Gupta PK, Tsuchiya T (eds) Chromosome engineering in plants, Part A. Elsevier Science Publishers BV, Amsterdam, pp 71–85Google Scholar
  18. Goldblatt P (1981) Cytology and phylogeny of leguminosae. In: Polhil RM, Raven PH (eds) Advances in Legume Systematics. Part II. Roy Bot Kew, EnglandGoogle Scholar
  19. Greilhuber RJ, Speta F (1976) C-banded karyotypes in the Scilla hohenackeri group, S. persica and Puschkinia (Liliaceae). Plant Syst Evol 126:149–188CrossRefGoogle Scholar
  20. Guerra M (2000) Patterns of heterochromatin distribution in plant chromosomes. Genet Mol Biol 23:1029–1041CrossRefGoogle Scholar
  21. Gutiérrez JF, Vaquero F, Vences FJ (1994) Allopolyploid vs. Autopolyploid origins in the genus Lathyrus (Leguminosae). J Hered 73:29–40CrossRefGoogle Scholar
  22. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  23. Holmgren PK, Holmgren NH, Barnett LC (1990) Index herbariorum I. The herbaria of the world, 8th ed. Regnum Veg 120:1–693Google Scholar
  24. Kawaha HIT, Ellis JR, Sybenga J (1995) Cytogenetics of Lathyrus pallustris, a natural autohexaploid. Genome 38:827–831CrossRefGoogle Scholar
  25. Kenicer GJ, Kajita T, Pennington RT, Murata J (2005) Systematics and biogeography of Lathyrus (Leguminosae) based on internal transcribed spacer and cpDNA sequence data. Am J Bot 92:1199–1209CrossRefPubMedGoogle Scholar
  26. Klamt A, Schifino-Wittmann MT (2000) Karyotype morphology and evolution in some Lathyrus (Fabaceae) species of southern Brazil. Genet Mol Biol 23:463–467CrossRefGoogle Scholar
  27. Krapovickas A, Fuchs AM (1957) Notas citológicas sobre Leguminosas II. Revista Invest Agr 11:215–218Google Scholar
  28. Kubis SE, Heslop-Harrison JS, Desel C, Schmidt T (1998) The genomic organization of non-LTR retrotransposons (LINEs) from three Beta species and five other angiosperms. Plant Mol Biol 36:821–831CrossRefPubMedGoogle Scholar
  29. Kupicha FK (1974) Taxonomic studies in the tribe Vicieae (Leguminosae). Ph.D. thesis. University of Edinburgh, Edinburgh, UK. In Lavania UC, Sharma AK. 1980. Giemsa C-banding in Lathyrus L. Bot Gaz 141:199–203Google Scholar
  30. Kupicha FK (1983) The infrageneric structure of Lathyrus. Notes Roy Bot Gard Edinb 41:209–244Google Scholar
  31. Lavania UC, Sharma AK (1980) Giemsa C-banding in Lathyrus L. Bot Gaz 141:199–203CrossRefGoogle Scholar
  32. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  33. Maluszynska J, Heslop-Harrison JS (1993) Physical mapping of rDNA loci in Brassica species. Genome 36:774–781CrossRefPubMedGoogle Scholar
  34. Mercado-Ruaro P, Delgado-Salinas A (1998) Karyotypic studies on species of Phaseolus (Fabaceae: Phaseolinae). Am J Bot 85:1–9CrossRefPubMedGoogle Scholar
  35. Moscone EA, Matzke MA, Matzke AJM (1996) The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105:231–236CrossRefGoogle Scholar
  36. Moscone EA, Klein F, Lambrou M, Fuchs J, Schweizer D (1999) Quantitative karyotyping and dual-color FISH mapping of 5S and 18S-25S rDNA probes in the cultivated Phaseolus species (Leguminosae). Genome 42:1224–1233CrossRefPubMedGoogle Scholar
  37. Moscone EA, Samuel R, Schwarzacher T, Schweizer D, Pedrosa-Harand A (2007) Complex rearrangements are involved in Cephalanthera (Orchidaceae) chromosome evolution. Chromosome Res 15:931–943CrossRefPubMedGoogle Scholar
  38. Murray BG, Bennett MD, Hammett KRW (1992) Secondary constrictions and NORs of Lathyrus investigated by silver staining and in situ hybridization. Heredity 68:473–478CrossRefGoogle Scholar
  39. Nandini AV, Murray BG (1997) Intra and interspecific variation in genome size in Lathyrus (Leguminosae). Bot J Linn Soc 125:359–366Google Scholar
  40. Narayan RKJ (1982) Discontinuous DNA variation in the evolution of plant species: the genus Lathyrus. Evolution 36:877–891CrossRefGoogle Scholar
  41. Narayan RKJ (1991) Molecular organization of the plant genome: Its relation to structure, recombination and evolution of chromosomes. J Genet 70:43–61CrossRefGoogle Scholar
  42. Narayan RKJ, McIntre FK (1989) Chromosomal DNA variation, genomic constraints and recombination in Lathyrus. Genetica 79:45–52CrossRefGoogle Scholar
  43. Narayan RKJ, Rees H (1976) Nuclear DNA variation in Lathyrus. Chromosoma 54:141–154CrossRefGoogle Scholar
  44. Neubert EE, Miotto STS (2001) O gênero Lathyrus L. (Leguminosae-Faboideae) no Brasil. Iheringia Ser Bot 56:51–114Google Scholar
  45. Neves N, Viegas W, Pikaard CS (2005) Nucleolar dominance and rRNA gene dosage control: a paradigm for transcriptional regulation via an epigenetic on/off switch. In: Meyer P (ed) Plant epigenetics. Blackwell Publishing, Sheffield, pp 201–222CrossRefGoogle Scholar
  46. Raina SN, Mukai Y, Kawaguchi K, Goel S, Jain A (2001) Physical mapping of 18S-5.8S-26S and 5S ribosomal RNA gene families in three important vetches (Vicia species) and their allied taxa constituting three species complexes. Theor Appl Genet 103:839–845CrossRefGoogle Scholar
  47. Reeves A (2001) MicroMeasure: a new computer program for the collection and analysis of cytogenetic data. Genome 44:239–443CrossRefGoogle Scholar
  48. Robledo G, Seijo JG (2008) Characterization of the Arachis (Leguminosae) D genome using fluorescence in situ hybridization (FISH) chromosome markers and total genome DNA hybridization. Genet Mol Biol 31:717–724CrossRefGoogle Scholar
  49. Robledo G, Seijo JG (2010) Species relationships among the wild B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection: a new proposal for genome arrangement. Theor Appl Genet 121:1432–2242CrossRefGoogle Scholar
  50. Robledo G, Lavia GI, Seijo JG (2009) Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theor Appl Genet 118:1295–1307CrossRefPubMedGoogle Scholar
  51. Romero-Zarco C (1986) A new method for estimating karyotype asymmetry. Taxon 35:526–530CrossRefGoogle Scholar
  52. Rossow RA (1982) Notas sobre el género Lathyrus. Darwiniana 24:489–495Google Scholar
  53. Sahin A, Gene H, Bagci E (2000) Cytotaxonomic investigations on some Lathyrus L. species growing in Eastern Mediterranean and Southern Aegean Regions II. Acta Bot Gallica 147:243–256CrossRefGoogle Scholar
  54. Schaefer H, Hechenleitner P, Santos-Guerra A, Menezes de Sequeira M, Pennington T, Kenicer G, Carine MA (2012) Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages. Evol Biol 12:250Google Scholar
  55. Schwarzacher T, Ambros P, Schweizer D (1980) Application of Giemsa banding to orchid karyotype analysis. Plant Syst Evol 134:293–297CrossRefGoogle Scholar
  56. Schweizer D (1976) Reverse fluorescent chromosome banding with Chromomycin and DAPI. Chromosoma 58:307–324CrossRefPubMedGoogle Scholar
  57. Seijo JG (2002) Estudios citogenéticos en especies Sudamericanas del género Lathyrus, Sección Notolathyrus (Leguminosae). Ph.D. thesis, Universidad Nacional de Córdoba, Córdoba, ArgentinaGoogle Scholar
  58. Seijo JG, Fernández A (2003) Karyotype analysis and chromosome evolution in South American Species of Lathyrus (Leguminosae). Am J Bot 90:980–987CrossRefPubMedGoogle Scholar
  59. Seijo JG, Solís Neffa VG (2006) Cytogenetic studies in the rare South American Lathyrus hasslerianus Burk. Cytologia 71:11–19CrossRefGoogle Scholar
  60. Senn HA (1938) Experimental data for a revision of the genus Lathyrus. Am J Bot 25:67–78CrossRefGoogle Scholar
  61. Strassburger E (1984) Periodic reduction of the number of chromosomes in the life history of living organism. Ann Bot 8:281–316Google Scholar
  62. Thomas HM, Harper JA, Meredith MR, Morgan WG, King IP (1997) Physical mapping of ribosomal DNA sites in Festuca arundinacea and related species by in situ hybridization. Genome 40:406–410CrossRefPubMedGoogle Scholar
  63. Ünal F, Wallace AJ, Callow RS (1995) Diverse heterochromatin in Lathyrus. Caryologia 48:47–63CrossRefGoogle Scholar
  64. Verma SC (1978) Proximal localization of constitutive heterochromatin in the legume Lathyrus tingitanus. Nucleus 21:125–131Google Scholar
  65. Wolny E, Hasterok R (2009) Comparative cytogenetic analysis of the genomes of the model grass Brachypodium distachyon and its close relatives. Ann Bot 104:873–881PubMedCentralCrossRefPubMedGoogle Scholar
  66. Yamamoto K, Fujiwara T, Blumenreich ID (1984) Karyotypes and morphological characteristics of some species in the genus Lathyrus L. Jpn J Breed 34:273–284CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2015

Authors and Affiliations

  • Laura Chalup
    • 1
  • Sergio Sebastián Samoluk
    • 1
  • Viviana Solís Neffa
    • 1
    • 2
  • Guillermo Seijo
    • 1
    • 2
  1. 1.Instituto de Botánica del Nordeste (UNNE-CONICET)Facultad de Ciencias AgrariasCorrientesArgentina
  2. 2.Facultad de Ciencias Exactas y Naturales y Agrimensura (UNNE)CorrientesArgentina

Personalised recommendations