Advertisement

Journal of Plant Research

, Volume 128, Issue 5, pp 849–861 | Cite as

Molecular cloning and biochemical characterization of isoprene synthases from the tropical trees Ficus virgata, Ficus septica, and Casuarina equisetifolia

  • Hirosuke Oku
  • Masashi Inafuku
  • Takeshi Ishikawa
  • Tnomonori Takamine
  • Mutanda Ishmael
  • Masakazu Fukuta
Regular Paper

Abstract

Three isoprene synthase (IspS) cDNA clones have been isolated from tropical trees (Ficus septica, F. virgata, and Casuarina equisetifolia), and their enzyme properties have been compared with those of Populus alba IspS. Phylogenetic analysis of the deduced amino acid sequences with known monoterpene synthase resolved IspS from F. septica and F. virgata and other IspSs in a clade together with TPS-b clade I, whereas IspS from C. equisetifolia was within another clade, sister to TPS-b clade II. The optimum reaction temperature was 40 °C for the IspSs isolated from the tropical trees, and 45 °C for P. alba IspS. The optimum pH of the IspSs from the tropical trees peaked between pH 8 and pH10 contrasting with the rather broad optimum pH (7.5–10.5) of P. alba IspS. IspSs from F. septica and F. virgata were activated solely by Mg2+, whereas IspS from C. equisetifolia was dependent more on Mn2+ than on Mg2+. Michaelis constant (Km) values of IspSs from tropical trees were lower than that of P. alba IspS. Analysis of inter fragment interaction energy of IspS-substrate complex model and crystal structure of bornyl diphosphate synthase (1N20) found that the coordination geometry of amino acids with higher attraction force is similar at the active site of C. equisetifolia IspS and bornyl diphosphate synthase. These observations suggest the occurrence of another group of IspSs in TPS-b subfamily and extend the knowledge on biochemical regulatory mechanism of isoprene emission from tropical trees.

Keywords

Isoprene synthase Tropical tree Cloning Characterization Docking simulation 

Notes

Acknowledgments

The authors thank Professor Yazaki, Kyoto University for the generous provision of the P. alba IspS cDNA. The authors also thank Dr. Ryo Yanagitta for his help with the use of Autodock program and Dr. Seikoh Saitoh for the installation and operation of PAICS program. Our thanks also go to Mr. Motoi Itoh, Naeko Miyazato, Narumi Tsunoda, Shin Kedashiro for their contribution in the cloning of IspS cDNA.

Supplementary material

10265_2015_740_MOESM1_ESM.pdf (379 kb)
Fig. S1 (PDF 378 kb)
10265_2015_740_MOESM2_ESM.doc (704 kb)
Table S1 (DOC 704 kb)

References

  1. Aaron JA, Christianson DW (2010) Trinuclear metal clusters in catalysis by terpenoid synthases. Pure Appl Chem 82:1585–1597PubMedCentralCrossRefPubMedGoogle Scholar
  2. Affek HP, Yakir D (2002) Protection by isoprene against singlet oxygen in leaves. Plant Physiol 129:269–277PubMedCentralCrossRefPubMedGoogle Scholar
  3. Basyuni M et al (2006) Molecular cloning and functional expression of a multifunctional triterpene synthase cDNA from a mangrove species Kandelia candel (L.) Druce. Phytochemistry 67:2517–2524CrossRefPubMedGoogle Scholar
  4. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci Publ Protein Soc 2:1511–1519. doi: 10.1002/pro.5560020916 CrossRefGoogle Scholar
  5. Cronquist A (1988) The evolution and classification of flowering plants, 2nd edn. The New York Botanical Garden, New YorkGoogle Scholar
  6. Davisson VJ, Woodside AB, Poulter CD (1985) Synthesis of allylic and homoallylic isoprenoid pyrophosphates. Methods Enzymol 110:130–144CrossRefPubMedGoogle Scholar
  7. Degenhardt J, Kollner TG, Gershenzon J (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70:1621–1637CrossRefPubMedGoogle Scholar
  8. Fehsenfeld F et al (1992) Emissions of volatile organic compounds, from vegetation and the implications for atmospheric chemistry. Global Biogeochem Cycles 96:389–430CrossRefGoogle Scholar
  9. Gray DW, Breneman SR, Topper LA, Sharkey TD (2011) Biochemical characterization and homology modeling of methylbutenol synthase and implications for understanding hemiterpene synthase evolution in plants. J Biol Chem 286:20582–20590PubMedCentralCrossRefPubMedGoogle Scholar
  10. Guenther A et al (1995) A global-model of natural volatile organic-compound emissions. J Geophys Res Atmos 100:8873–8892CrossRefGoogle Scholar
  11. Guenther A, Otter L, Zimmerman P, Greenberg J, Scholes R, Scholes M (1996) Biogenic hydrocarbon emissions from southern African savannas. J Geophys Res Atmos 101:25859–25865CrossRefGoogle Scholar
  12. Guenther A et al (1999) Isoprene emission estimates and uncertainties for the Central African EXPRESSO study domain. J Geophys Res Atmos 104:30625–30639CrossRefGoogle Scholar
  13. Helmig D et al (1998) Vertical profiling and determination of landscape fluxes of biogenic nonmethane hydrocarbons within the planetary boundary layer in the Peruvian Amazon. J Geophys Res Atmos 103:25519–25532CrossRefGoogle Scholar
  14. Hooft RWW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381:272CrossRefPubMedGoogle Scholar
  15. Ishikawa T, Ishikura T, Kuwata K (2009) Theoretical study of the prion protein based on the fragment molecular orbital method. J Comput Chem 30:2594–2601CrossRefPubMedGoogle Scholar
  16. Kesselmeier J et al (2000) Atmospheric volatile organic compounds (VOC) at a remote tropical forest site in central Amazonia. Atmos Environ 34:4063–4072CrossRefGoogle Scholar
  17. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999a) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313:701–706CrossRefGoogle Scholar
  18. Kitaura K, Sawai T, Asada T, Nakano T, Uebayasi M (1999b) Pair interaction molecular orbital method: an approximate computational method for molecular interactions. Chem Phys Lett 312:319–324CrossRefGoogle Scholar
  19. Koksal M, Zimmer I, Schnitzler JP, Christianson DW (2010) Structure of isoprene synthase illuminates the chemical mechanism of teragram atmospheric carbon emission. J Mol Biol 402:363–373PubMedCentralCrossRefPubMedGoogle Scholar
  20. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291CrossRefGoogle Scholar
  21. Lehning A, Zimmer I, Steinbrecher R, Bruggemann N, Schnitzler JP (1999) Isoprene synthase activity and its relation to isoprene emission in Quercus robur L-leaves. Plant Cell Environ 22:495–504CrossRefGoogle Scholar
  22. Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787PubMedCentralCrossRefPubMedGoogle Scholar
  23. Martin DM et al (2010) Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. Bmc Plant Biol 10:226PubMedCentralCrossRefPubMedGoogle Scholar
  24. Mayrhofer S, Teuber M, Zimmer I, Louis S, Fischbach RJ, Schnitzler RP (2005) Diurnal and seasonal variation of isoprene biosynthesis-related genes in Grey poplar leaves. Plant Physiol 139:474–484PubMedCentralCrossRefPubMedGoogle Scholar
  25. Monson RK, Jaeger CH, Adams WW, Driggers EM, Silver GM, Fall R (1992) Relationships among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. Plant Physiol 98:1175–1180PubMedCentralCrossRefPubMedGoogle Scholar
  26. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791PubMedCentralCrossRefPubMedGoogle Scholar
  27. Oku H, Fukuta M, Iwasaki H, Tambunan P, Baba S (2008) Modification of the isoprene emission model G93 for tropical tree Ficus virgata. Atmos Environ 42:8747–8754. doi: 10.1016/j.atmosenv.2008.08.036 CrossRefGoogle Scholar
  28. Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein Chem 66:27–85CrossRefPubMedGoogle Scholar
  29. Sasaki K, Ohara K, Yazaki K (2005) Gene expression and characterization of isoprene synthase from Populus alba. FEBS Lett 579:2514–2518CrossRefPubMedGoogle Scholar
  30. Scharer MA, Eliot AC, Grutter MG, Capitani G (2011) Structural basis for reduced activity of 1-aminocyclopropane-1-carboxylate synthase affected by a mutation linked to andromonoecy. FEBS Lett 585:111–114CrossRefPubMedGoogle Scholar
  31. Schnitzler JP, Zimmer I, Bachl A, Arend M, Fromm J, Fischbach RJ (2005) Biochemical properties of isoprene synthase in poplar (Populus × canescens). Planta 222:777–786. doi: 10.1007/s00425-005-0022-1 CrossRefPubMedGoogle Scholar
  32. Sharkey TD, Singsaas EL, Vanderveer PJ, Geron C (1996) Field measurements of isoprene emission from trees in response to temperature and light. Tree Physiol 16:649–654CrossRefPubMedGoogle Scholar
  33. Sharkey TD, Yeh S, Wiberley AE, Falbel TG, Gong D, Fernandez DE (2005) Evolution of the isoprene biosynthetic pathway in kudzu. Plant Physiol 137:700–712. doi: 10.1104/pp.104.054445 PubMedCentralCrossRefPubMedGoogle Scholar
  34. Sharkey TD, Gray DW, Pell HK, Breneman SR, Topper L (2013) Isoprene synthase genes form a monophyletic clade of acyclic terpene synthases in the Tps-B terpene synthase family. Evolution 67:1026–1040CrossRefPubMedGoogle Scholar
  35. Silver GM, Fall R (1995) Characterization of aspen isoprene synthase, an enzyme responsible for leaf isoprene emission to the atmosphere. J Biol Chem 270:13010–13016CrossRefPubMedGoogle Scholar
  36. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedCentralCrossRefPubMedGoogle Scholar
  37. Vickers CE et al (2009) Isoprene synthesis protects transgenic tobacco plants from oxidative stress. Plant Cell Environ 32:520–531CrossRefPubMedGoogle Scholar
  38. Vickers CE, Possell M, Hewitt CN, Mullineaux PM (2010) Genetic structure and regulation of isoprene synthase in Poplar (Populus spp.). Plant Mol Biol 73:547–558CrossRefPubMedGoogle Scholar
  39. Wiberley AE, Donohue AR, Westphal MM, Sharkey TD (2009) Regulation of isoprene emission from poplar leaves throughout a day. Plant Cell Environ 32:939–947. doi: 10.1111/j.1365-3040.2009.01980.x CrossRefPubMedGoogle Scholar
  40. Zurbriggen A, Kirst H, Melis A (2012) Isoprene production via the mevalonic acid pathway in Escherichia coli (Bacteria). Bioenerg Res 5:814–828. doi: 10.1007/s12155-012-9192-4 CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2015

Authors and Affiliations

  • Hirosuke Oku
    • 1
    • 5
  • Masashi Inafuku
    • 1
  • Takeshi Ishikawa
    • 4
  • Tnomonori Takamine
    • 2
  • Mutanda Ishmael
    • 3
  • Masakazu Fukuta
    • 2
  1. 1.Tropical Biosphere Research CenterUniversity of the RyukyusNishiharaJapan
  2. 2.Faculty of AgricultureUniversity of the RyukyusNishiharaJapan
  3. 3.United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
  4. 4.Nagasaki University Graduate School of Biomedical SciencesNagasakiJapan
  5. 5.Molecular Biotechnology Group, Center of Molecular BioscienceUniversity of the RyukyusNishiharaJapan

Personalised recommendations